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ABSTRACT

We introduce and investigate the concept of random sampling

to the problem of image reconstruction in a multistatic SAR

system. We first develop an appropriate figure of merit for

the invertibility of the measurement data. We then show nu-

merical simulations of a particular random measurement pro-

cess under various parameters and compare the performance

of this random sampling to that of the sampling given by a de-

terministic elliptical transform. We expose new connections

between SAR processing and random matrix theory, and de-

velop a fundamental result relating image quality to SAR sys-

tem parameters for this mode.

Index Terms— Synthetic aperture radar, Radon transforms,

tomography

1. INTRODUCTION

In [1], we extended the previous monostatic work of Red-

ding [2], Milman [3], Norton[4], and others, by generalizing

the SAR geometries to treat the case of a multistatic system

of SAR transmitters and receivers in arbitrary three dimen-

sional orbits over a flat, two-dimensional reflectivity plane.

We observed that an impulsive radar burst between a trans-

mit/receive pair measures a sequence of line integrals of the

reflectivity over a set of ellipses. We defined an elliptical

Radon transform, Ref , of a two dimensional reflectivity func-

tion f . This transform describes the measurements taken by a

bistatic pair moving together with a constant velocity vector.

We used a variation of the approximate inverse technique to

invert Re.

In recent work, Yazici, Yarman, and Cheney [5] have de-

veloped a similar tomographic formulation of the bistatic SAR

problem. In contrast to that work, we have chosen to apply the

tools of linear algebra by casting the inversion in terms of a

sparse matrix equation

Af̂ = re (1)

where A is a large sparse m×n matrix representing n image

pixels and m measurements, f̂ is an unknown vector repre-

senting a reflectivity estimate of each pixel in the image, and

re is the measurement vector. Each element of re is a mea-

surement of the line integral of the reflectivity function around

an ellipse.

In this present work, we examine the consequences of

random sampling on the performance of the image recon-

struction process. Our main contributions are the derivation

of a specific random sampling approach for multistatic SAR,

and the relationship between image quality and SAR system

parameters. We consider the inversion problem in which a

large number of SAR vehicles are moving in uncoordinated

fashion over the field of interest. To these ends, we first de-

velop an appropriate figure of merit for the invertibility of the

measurement data. We then show numerical simulations of a

particular random measurement process under various param-

eters and compare the performance of this random sampling

to that of the sampling given by the deterministic elliptical

transform Ref . We expose new connections between SAR

processing and random matrix theory.

Our proposed approach can be compared and contrasted

to the related area of compressed sensing (CS), c.f., [6, 7]. In

terms of equation 1, CS recovers an image f̂ from the random

projections re, by assuming that f̂ is sparse in some basis. In

this case, m can be less than n. In common with CS, our

approach employs in-some-sense-random projections defined

by the matrix A. However, we make no assumption about

the compressibility of the image f̂ ; generally, m > n in this

work. We emphasize the consequences of A’s sparsity, rather

than that of the image.

2. INVERSION FIGURE OF MERIT

Inversion algorithms suffer from impediments arising from a

variety of causes. In this work, we shall focus on those error

mechanisms which depend solely on the sampling strategy

and not on the details of the image to be reconstructed.

It can be shown that in the presence of Gaussian mea-

surement noise, a maximum likelihood image estimate f̂ML

is found by the standard least-squares solution:

f̂ML = (AT A)−1AT re

= A+re (2)

= VΣ+UT re
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where A+ is the pseudoinverse of A, U and V are orthog-

onal matrices, and Σ+ is a diagonal matrix whose elements

are given by the reciprocals of the singular values on the di-

agonal of the matrix Σ in the singular value decomposition

A = UΣVT . If we require that the estimate f̂ML remain

unbiased, then all components of the output space spanned by

the columns of V must be retained. Recall that the ML es-

timate uses no a priori information about the image. These

assumptions lead to an simple figure of merit which does not

depend on the image details, but on the sampling geometry

details defined by the matrix A.

If the measurement vector is decomposed into its signal

and zero-mean noise component, re = r̄e + n, then we can

consider the noisy portion of the linear inversion as

fN = VΣ+UT n. (3)

We seek an appropriate statistic for the noise image vector

fN . If the components of n are zero-mean, uncorrelated ran-

dom variables of variance σ2
I , then the average variance of the

image pixels σ2
O can be written in the relationship

G =
σ2

O

σ2
I

=
1
n

n∑
i=1

1
σ2

i

=
1
n

n∑
i=1

1
λi

. (4)

We note that the square of the singular value σ2
i is the same as

the eigenvalue λi of AT A for i ≤ n. We will use this noise

power gain as a figure of merit for the performance of the

inversion. The number G depends solely on the distribution

of the singular values of A.

3. RANDOM SAMPLING SIMULATION
DESCRIPTION

There exist a rich set of possibilities for random sampling

strategies. The degrees of freedom include (at least) the trans-

mit/receive configuration of the vehicles; the spatial distribu-

tion of the vehicles; and the distribution of sample ellipses

used from a single transmit burst.

We choose a Monte Carlo simulation method in which the

locations of many vehicles are drawn from a uniform distri-

bution in a volume directly above a square image of interest,

with heights varying from 1 to 2 image dimensions. The ve-

hicles are paired into single transmit/receive units which gen-

erate sample ellipses of the general form (corrected from [1]):

x2 + (1 − 4d2

K2
)(y − d(h2

1 − h2
2)

(K2 − 4d2)
)2 =

K2

4
− d2 − h2

1 + h2
2

2
+

(h2
1 − h2

2)
2

4(K2 − 4d2)
= r2 (5)

where the pair lies on some y axis at x = ±d, hi represent

the heights of the vehicles over the plane, and K is the total

distance traveled by a photon reflected from the transmitter to

the receiver. We can re-parameterize the ellipses, replacing K

with the number r, the semi-major axis of the ellipse. Starting

with a small value, the ellipse parameter r is incremented by

the pixel dimension δx until the ellipses become too large to

interact with the image. This local y axis can be inclined at

any angle with respect to the reference y axis of the image,

depending on the bistatic pair’s geometry. The simulation re-

peats this process until the desired number of line integral

measurements, m, is reached or slightly exceeded.

4. RESULTS

We now summarize the performance results of the Monte Carlo

simulations and compare these to the standard deterministic

Ref performance. All simulations in this work employ an

image with n = 50 × 50 pixels. First, we compare in detail

the distribution of the first 2500 singular values of A.

Figure 1 highlights a deterministic-looking distribution for

the random sampling case, with a sharp cutoff at the low end,

exhibiting no singular values below about σ < 0.1. By con-

trast, the deterministic version looks rather random; more im-

portantly, it indicates that a large number of singular values

exist near the origin.

Fig. 1. The empirical singular value distributions of A for

Ref and for a random sampling trial, with m ≈ 12000.

This small-σ difference shows up even more strikingly in

the inversion performance shown in Figure 2. The results in-

dicate that random sampling typically outperforms Ref by

40 dB...a very substantial difference.

To verify the performance improvement due to random

sampling methods, we implemented the full measurement and

inversion process for a Shepp-Logan test image with measure-

ments corrupted by a Gaussian noise of constant variance σ2
I .

Both A matrices had m ≈ 9000. Figure 3 shows a side-by-

side comparison the resulting images.

The random-sampling inversion is visually indistinguish-

able from a perfect image, while the Ref inversion, while
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Fig. 2. Noise gain of deterministic and random sampling as a

function of the measurement size m and constant n = 50×50.

Fig. 3. Comparison of reconstructed images with the same

measurement noise power, using m ≈ 9000.

recognizable, is clearly inferior. The distortions in the Ref
image appear striped because the 2D eigenfunctions associ-

ated with the smallest singular values exhibit these types of

shapes. Thus we see that random sampling produces stable

inversions, and in fact can easily outperform the inversion

of standard deterministic trajectories. These results are con-

sistent with the findings of [6] for the inversion of the usual

Radon transform.

5. APPLICATION OF RANDOM MATRIX THEORY

The non-zero elements of the sparse matrix A are the arc

lengths of randomly placed ellipses cut by a rectangular grid.

We now examine the consequences of treating the elements

Aij as random variables with marginal density function

px(x) = (1 − s)δ(x) + sPx(x) (6)

where s is the sparsity of A. For dense matrices (s ≈ 1) with

i.i.d. Aij entries, large m and n with β = n/m, the eigen-

Fig. 4. Comparison of actual and Marchenko-Pastur eigen-

value densities of AT A for various γ = m/n.

values of AT A are distributed according to the Marchenko-

Pastur (MP) asymptotic law [8]:

pλ(λ) =
1

2πβmσ2
Aλ

√
(b − λ)(λ − a) (7)

where λ > a = mσ2
A(1 − √

β)2, λ < b = mσ2
A(1 +

√
β)2,

and σ2
A is the variance of Aij . The general problem, with

jointly distributed Aij entries and s � 1, is open. Nagao and

Tanaka [9] conclude that deviations from the MP law due to

the sparsity in equation 6 are significant in the tail region of

the spectrum. Figure 4 compares the actual and MP distribu-

tions for a particular instantiation of A. The MP parameter

σ2
A is calculated directly from the matrix. The MP density

functions are scaled for easier comparison at small eigenval-

ues. We observe that the MP approximation describes the

lower end of the distributions reasonably well in all cases.

We also observe, in agreement with Nagao, that the devia-

tions are most significant in the tail regions; in our case, the

tail region deviations get more significant as m/n increases.

The stochastic version of our figure of merit (equation 4) is

the expectation of 1/λ:

GMP = E[
1
λ

] =
∫ b

a

1
λ

pλ(λ)d λ =
1

σ2
A(m − n)

(8)

which is the fundamental result of the present work. We

note that because deviations occur at higher λ values , GMP

should be an asymptotic upper bound on the noise power gain

of the inversion. Furthermore, because the tail deviations are

attenuated by the factor 1/λ, and have small pλ(λ), this upper

bound may approximate the exact answer reasonably well.

Figure 5 shows this upper bound GMP using the nominal

measured σ2
A of the matrices, an empirical measurement, and

a best-fit GMP using a modified value σ′2A = 2σ2
A = ησ2

A.

We see that our upper bound is exceeded at small matrix

size. The matrix in this case may be too small to consistently
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Fig. 5. Noise power gain versus 1/β = m/n showing an

asymptotic upper bound, empirical measured data, and a best-

fit model.

obey the MP law. At higher, more-useable values of m/n,

we see that the price of neglecting the sparsity and the joint

density of the random matrix A is a consistent factor of 2 in

the input noise power.

Finally, we can recast equation 8 in terms of physical

parameters of interest in the SAR system. It can be shown

by simple counting arguments that the sparsity s of A is in-

versely proportional to
√

n. Therefore, the variance of Aij is

proportional to δ2
x/

√
n, where δ2

x is the area corresponding to

a pixel in the reflectivity plane. But δ2
x = A/n, where A is

the area of the image. Therefore,

GMP = κ
n3/2

A(m − n)
(9)

for some constant κ. Recall that the measurement noise has

been modeled as i.i.d. Gaussian, which is approximately cor-

rect in the case where the SAR system noise is dominated

by the electronic noise in the receiver amplifiers. Under this

model, improvements in linear resolution on the same area re-

quire both the electronic noise bandwidth and the input noise

variance σ2
I to increase proportionally with

√
n. Therefore

the image noise variance can be expressed as

σ2
O = κ′

n2

A(m − n)
. (10)

Equations of this type are useful as scaling rules for system

design. For example, consider a working SAR system in

which n = 10, 000 and which can process m = 30, 000 mea-

surements. According to equation 10, a new system needing

twice the pixels over the same area will need to boost transmit

power by 8 times (9 dB) to maintain the pixel quality of the

old product. Alternatively, m could be increased to 100,000

without modification to the transmit power.

6. CONCLUSIONS

We have proposed random-location sampling methods for mul-

tistatic SAR in which a swarm of SAR vehicles at uncon-

trolled locations provides a set of measurements. We devel-

oped one (of many possible) random-sampling strategies and

showed that this strategy can significantly outperform a deter-

ministic sampling method which is prevalent in the literature.

We applied the remarkable power of a central result in random

matrix theory to produce a simple closed-form estimation of

the pixel quality in a random SAR in terms of its system pa-

rameters.

Areas of interest for future extensions of this work in-

clude: improvement of the asymptotic performance bound by

developing a better closed-form approximation to the eigen-

value distribution for this problem; comparison of alternative

random-sampling strategies; and investigation of the effect of

random sampling on other SAR inversion disturbances.
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