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ABSTRACT

Even though recently proposed time-reversal MUSIC ap-
proach for inverse scattering problem is non-iterative and
exact, the approach breaks down when there are more tar-
gets than sensors. The main contribution of this paper is
a novel non-iterative exact inverse scattering algorithm that
still guarantees the exact recovery of the extended targets
under a very relaxed constraint on the number of source
and receivers, where the conventional time-reversal MUSIC
fails. Such breakthrough was possible from the observation
that the induced currents on the unknown targets assume the
same sparse support, which can be recovered accurately us-
ing the simultaneous orthogonal matching pursuit developed
for multiple measurement vector problems. Simulation re-
sults demonstrate that perfect reconstruction can be quickly
obtained from a very limited number of samples.

Index Terms— inverse scattering, time-reversal MUSIC,
compressed sensing, simultaneous OMP, exact reconstruction

1. INTRODUCTION
One of the fundamental questions in wave scattering theory
is to retrieve unknown constitutive properties from measured
scattering elds. Such problem - often called inverse scat-
tering - has numerous applications in practise, such as radar
imaging, geophysical applications, ultrasound, and etc [1].
In particular, we are concerned about inverse scattering in

the framework of the inhomoegenous Helmholtz equation:
(
∇2 + k2(r)

)
ψ(n)(r) = S(n)(r), n = 1, · · · , Nt , (1)

where ψ(n)(r) is the scalar wave eld measured at detec-
tor location r ∈ Γr ⊂ R3 produced by the n-th transmitter
con gurations S(n)(r), and the inhomegeneous wavenumber
k2(r) is given by k2(r) = k2

0 −X(r), where k2
0 is the known

wavenumber of the background medium and X(r) is the ex-
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tended scattering potential:

X(r) =

{
V (r), if r ∈ D.
0, otherwise; (2)

Then, Eq. (1) can be converted into the well-known Foldy-
Lax multiple scattering model:

ψ(n)(r) = ψ
(n)
i (r) +

∫
Ω

dr′G0(r; r
′)ψ(n)(r)X(r′),(3)

where G0(r; r
′) denotes the homogenous Green’s function

calculated by
(
∇2 + k2

0

)
G0(r; r

′) = δ(r− r
′) , (4)

and the homogenous incident eld ψ(n)
i (r) due to the n-th

transmitter pattern is given by
(
∇2 + k2

0

)
ψ

(n)
i (r) = S(n)(r) , n = 1, · · · , Nt. (5)

The inverse scattering problem is then to estimate unknown
scattering potential V (r) and its unknown domainD from the
scattered eld measurements ψ(n)

scat(r) = ψ(n)(r) − ψ
(n)
i (r)

at the detectors locations at r ∈ Γr.
Note that the inverse problem in Eq. (3) is highly nonlin-

ear since the total ux ψ(n)(r′) within the integral is a func-
tion of the unknown scattering potential X(r). Most of the
classical inverse scattering methods take the form of iterative
method that uses the successive Born approximation for each
newly estimated scattering potential. However, such approach
is computationally expensive due to the repeated calculation
of the wave equations.
In order to deal with these issues, various methods have

been proposed. Especially important technique is the time-
reversal approach using multiple signal classi cation (MU-
SIC) [2]. Even though this approach is non-iterative and ex-
act within the context of multiple scattering, the time-reversal
MUSIC breaks down when there are more targets than sen-
sors. Speci cally, the performance of the time-reversal MU-
SIC is governed by the minimum number of transmitters and
detectors rather than their maximum; hence, the algorithm
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cannot take advantage of the increasing number of transmit-
ters (or receivers) as long as the number of its counterpart is
xed. This asymmetric imaging geometry is quite often en-
countered in practise, such as passive radar imaging, near eld
optical microscopy, and etc.
The main contribution of this paper is to overcome the

drawbacks of the conventional time-reversal MUSIC us-
ing the joint sparse model with common sparsity support
in distributed compressed sensing [3], or multiple measure-
ment vector (MMV) problems [4]. Unlike the conventional
time-reversal MUSIC approaches, our sparsity based recon-
struction theory guarantees that the maximum number of
recoverable targets is limited by the average of the number of
source and detectors, which is usually much greater than its
minimum. Furthermore, the problem can be solved using var-
ious simultaneous sparse approximation algorithms such as
simultaneous orthogonal matching pursuit (S-OMP) [4], and
the unknown scattering potential can be exactly calculated
based on the estimated support.

2. PROBLEM FORMULATION
In our model, the unknown eld and scattering potential are
represented as a linear combination of the basis functions
{αi(r)}

N
i=1:

ψ(n)(r) =
N∑

j=1

ψ
(n)
j αj(r) , X(r) =

N∑
k=1

x
(n)
k αk(r), .(6)

Also de ne the generalized sampling function {si(r)}
Nr

i=1 :

ψ
(n)
i,scat =

〈
si, ψ

(N)
scat

〉
=

∫
Ω

si(r)ψ
(n)
scat(r)dr, i = 1, · · · , Nr .

(7)
Then, multiple scattering model can be represented by

ψ
(n)
i,scat =

N∑
j=1

Gi,jJ
(n)
j (8)

where J (n)
j = ψ

(n)
j xj and

Gi,j =

∫
Ω

dr

∫
Ω

dr′si(r)G0(r; r
′)αj(r)αj(r

′) . (9)

We now collect all the measurements from each transmitter
pattern and receivers into a matrix form, resulting in a matrix
equation:

Ψ = GJ (10)

where the scattering measurement matrix is given by

Ψ =

⎛
⎜⎜⎝

ψ
(1)
1,scat ψ

(2)
1,scat · · · ψ

(Nt)
1,scat

...
...

. . .
...

ψ
(1)
Nr,scat ψ

(2)
Nr,scat · · · ψ

(Nt)
Nr,scat

⎞
⎟⎟⎠(11)

and the induced current matrix J can be constructed as fol-
lows:

J =

⎛
⎜⎜⎝

J
(1)
1 J

(2)
1 · · · J

(Nt)
1

...
...

. . .
...

J
(1)
N J

(2)
N · · · J

(Nt)
N

⎞
⎟⎟⎠ ∈ C

N×Nt (12)

Now let us de ne the following row-diversitymeasure that
counts the number of rows in J that contains non-zero ele-
ments:

R(J) =

N∑
i=1

χ [||Ji,:|| > 0] (13)

where χ[·] denotes the indicator function and || · || is an arbi-
trary vector norm. We now de ne an active index set I of the
extended target:

I = {j ∈ {1, 2, · · · , N} : xj > 0} , (14)

and M denotes the cardinality of the active index set, i.e.
M = |I|. Now, our nonlinear inverse scattering problem be-
comes the following simultaneous estimation problem of the
active index and the induced currents:

{ĴI , Î} = argmin
J,I

||Ψ−G:,IJI ||
2
F (15)

whereG:,I denotes the submatrix ofG by collecting only the
columns corresponding the index set I, and JI is the corre-
sponding active sub-vector, and || · ||F denotes the Frobenius
norm, respectively. The formulation Eq. (15) is the basis of
the time-reversal MUSIC [2].

3. TWO STEP EXACT RECONSTRUCTION
3.1. Identi ability of Active Index Set
In many situations, the support of the targets are usually
sparse compared to the whole eld of view Ω. In this case,
the estimation problem can be reformulated as follows:

(P0) : min R(J), subject toΨ = GJ. (16)

whereΨ ∈ C
Nr×Nt ,G ∈ CNr×N ,J ∈ CN×Nt andR(J) is

the row diversity. Given matrix G, we now de ne the quan-
tity spark(G) as the smallest number of linearly dependent
column ofG. Then, Chen and Huo [4] showed the following
suf cient condition for the uniqueness of (P0).

Theorem 1 Let rank(Ψ) denotes the rank of the matrix Ψ.
Then, (P0) has the unique solution if

R(J) ≤ (spark(G) + rank(Ψ)− 1) /2 . (17)

Theorem 1 gives us the insight about ultimate number of
targets that the inverse scattering approach (P0) can recon-
struct. Speci cally, using rank(Ψ) ≤ Nt and spark(G) ≤
Nr + 1, we can easily show that the maximum number of
targets that (P0) has unique solution is given by:

R(J) ≤ (Nt +Nr) /2 . (18)
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Note that this is a very big improvement over the time-reversal
MUSIC since the maximum number of recoverable targets in
time-reversal MUSIC is given by min(Nt, Nr) [2]. For the
case of asymmetric imaging example with Nt � Nr, we can
see that (Nt +Nr)/2� min(Nt, Nr); hence, the maximum
number of recoverable targets in (P0) is much bigger than that
of the time-reversal MUSIC.
The upper bound Eq. (17) for the recoverable number of

target can be also used for optimizing the imaging geometry.
We rst de ne another important concept called mutual inco-
herence:

μ(G) = max
1≤i,j≤N,i�=j

|〈G:,i,G:,j〉| , (19)

where G:,i denotes the i-th column of the G matrix. Then,
Chen and Huo [4] showed that following:

Corollary 1 IfΨ = GJ and

R(J) <
(
μ(G)−1 + rank(Ψ)

)
/2 (20)

then matrix J is the unique solution to the problem (P0).

Now, in order to maximize the number of recoverable tar-
gets, we should maximize both μ(G)−1 and rank(Ψ). One
of the nice properties of this criterion is that the geometry
of the sources and the detectors are completely decoupled.
More speci cally, we rst optimize the detector locations by
minimizing the mutual incoherence μ(G). This procedure is
completely independent not only from the source geometry
but also from the unknown target geometry. After the detec-
tor geometry is xed, the remaining optimization criterion is
to maximize rank(Ψ) by changing the source con guration.

3.2. Sparse Reconstruction under Simultaneous Sparsity
Even though (P0) gives us the useful information about the
uniqueness of the sparse reconstruction, its direct optimiza-
tion requires computationally expensive combinatorial opti-
mization. For the single measurement vector case such that
Nt = 1, there have been extensive investigations about so-
called l0/l1-equivalence [5]. More speci cally, if the mea-
surement basis and the signal basis are incoherent, the convex
l1 optimization problem provides the unique solution which
is identical to that of (P0) [5].
The main technical dif culty to extend this idea to multi-

ple measurement vector cases (i.e. Nt > 2) is that the corre-
sponding l1 norm ofN×Ntmatrix J does not exist. Recently,
many different approaches has been proposed to address this
issue [4, 6]. The most popular approaches are based on for-
ward sequential selection methodsusing simultaneous orthog-
onal matching pursuit (S-OMP) [4].
Algorithm S-OMP
1. Initialize the residual matrix R0 = Ψ, the index set
I0 = ∅, and the iteration count t = 1.

2. Find the index ωt that solves the optimization problem:

max
ω
|| (G:,ω)

H
Rt||p (21)

where p ≥ 1 and || · ||p denotes the lp norm.

3. Set It = It−1 ∪ {ωt}.

4. Determine the orthogonal projectorPt onto the span of
the atoms indexed in It:

Pt = G:,It

(
G

H
:,It

G:,It

)−1
G

H
:,It

(22)

5. Calculate the new residual:

Rt = (I−Pt)Ψ (23)

6. Increase the step count t and go to step 2 if ||Rt||F ≥ ε.

Note that except for the lp-norm of the vector in Eq. (21),
the algorithm is identical to the standard OMP algorithm for
the single measurement vector. Chen and Huo [4] showed
that regardless of the vector norm the S-OMP can successfully
recover the sparsest representation.

3.3. Exact Reconstruction of Scattering Potential
For the estimated active index set Î, the unknown induced
current matrix J can be calculated using least square tting:

Ĵ
Î
=

(
G:,Î

)†

Ψ (24)

In continuous formulation, this implies that the both unknown
induced current J (n)(r′) = ψ(n)(r′)V (r′), r′ ∈ D and the
unknown domain D due to the n-th transmitter pattern have
been estimated. Then, the unknown total ux ψ(n)(r′′), r′′ ∈
Ω can be estimated using the following Foldy-Lax multiple
scattering model:

ψ̂(n)(r′′) = ψ
(n)
inc(r

′′) +

∫
D̂

dr′G0(r
′′, r′)Ĵ (n)(r′) .(25)

Using the estimated total eld ψ̂(n)(r′′), the least squares es-
timate for the unknown scattering potential is given by

V̂ (r′′) =

∑Nt

n=1

(
ψ̂(n)(r′′)

)∗

Ĵ (n)(r′′)∑Nt

n=1 |ψ̂
(n)(r′′)|2

, r
′′ ∈ D. (26)

Marengo et al [2] derived different form of non-iterative
exact recontruction algorithm for the scattering potential
when the support D is given. However, the algorithm in [2]
is for the point targets and we are not aware of generalization
for the extended targets. Our prefect reconstruction formula
Eq. (26) is so general that it can be used for both point targets
as well as extended targets.
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4. NUMERICAL RESULTS
The rst simulation was performed to verify the effects of the
increasing number of transmitters. The dimension of the FOV
is set to 4λ × 4λ × 4λ with the voxel size of 0.2λ × 0.2λ×
0.2λ, where λ denotes the wavelength. On each surrounding
planes, 100 detectors are uniformly distributed with the detec-
tor pitch of 0.4λ. Figure 1 illustrates that more targets can be
reconstructed perfectly with increasing number of transmit-
ters, which con rms our theoretical analysis. Furthermore,
this number of recoverable target is signi cantly larger than
that of the time-reversal MUSIC, since the maximum num-
ber of recoverable targets by the time-reversal MUSIC is only
Nt(= 1, 2, · · · , 6) for this imaging scenario.
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Fig. 1. Perfect reconstruction ratio of the proposed algorithm.

We have also performed the simulation for more realistic
imaging scenario, where the imaging object (say, “K”-object)
is an extended target as illustrated in Fig. 2(a). The FOV is
10λ× 10λ× 10λ with the voxel size of 0.5λ× 0.5λ× 0.5λ.
Again, 100 detectors are distributed uniformly on the sur-
rounding planes, and the transmitters are located at the cen-
ter of the surrounding planes. Figures 2(b)-(d) are the recon-
structed image using one, two and six transmitters, respec-
tively. We can observe that more accurate reconstruction can
be obtained with more transmitters. Note that in this imaging
geometryNt ≤ 6 and Nr = 600; hence, the maximum num-
ber of recoverable target is smaller than (600 + 6)/2 = 303.
Currently, the S-OMP approach can recover about the size of
non-zero support of the “K”-object, which is about 50. The
gap between the theoretical performance bound and S-OMP
performance may be due to the large mutual coherence es-
pecially below the diffraction limit. Hence, to achieve the
maximum performance even below the sub-diffraction reso-
lution, we may need to devise additional incoherent measure-
ment scheme.

5. CONCLUSION
This paper derived a novel non-iterative exact inverse scatter-
ing algorithm using simultaneous OMP based on the observa-
tion that the induced current on the unknown targets assumes
the same sparse support. Using the theoretical and numerical
analysis, we showed that the maximum number of recover-
able targets using the new method is upper bounded by the

(a) (b)

(c) (d)
Fig. 2. (a) Original phantom. S-OMP reconstruction using
(b) one, (c) two , and (d) six transmitters, respectively.

average of the number of transmitters and detectors. This
is a signi cantly improvement over the conventional time-
reversal MUSIC especially when the number of source or de-
tectors are signi cantly smaller than its counterpart. We be-
lieve that our results ll the missing gap toward the complete
theory for the non-iterative exact inverse scattering theory.
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