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ABSTRACT
For intelligent sensory systems, it is highly desirable to de-

velop assessment methods that can continuously evaluate the

reliability of potential sensory strategies taking into consider-

ation changes in observation conditions. This relies on mea-

suring a set of complementary features from multiple sen-

sors and combining these features in an ”intelligent” way that

maximizes information gather and minimizes the impact of

noise coming from the individual sensors. In this work, we

formulate a statistical assessment method for estimating the

reliability of observation conditions and propose an optimal

mapping into weighting measures using genetic algorithms.

Our approach is particularly beneficial for multimodal sys-

tems such as audio-visual speech recognition (AVSR).

Index Terms— Multisensor systems, Reliability estima-

tion, Speech recognition.

1. INTRODUCTION

1.1. Bayesian Fusion

Multimodal fusion or integration combines S complemen-

tary features, originating from a single or multiple modal-

ities, in order to maximize information gather and to over-

come the impact of noise in each individual stream. The sim-

plest way to combine audio and video data is to use Bayes’

rule and multiply the audio and video a posteriori probabili-

ties. From a probabilistic perspective, this approach is valid

if the audio and video data are independent. Perceptive stud-

ies have shown that in human speech perception, audio and

video data are treated as class conditional independent [1]. In

this case, the conditional probability of the observation vector

x1:S = (x1, ..., xS) given the class label ci is governed by the

product:

P (x1:S |ci) = P (x1, ..., xS |ci) =
S∏

s=1

P (xs|ci). (1)

Using Bayes’ rule, we get the desired a posteriori probability

of the class given the features:

P (ci|x1:S) =
∏S

s=1 P (ci|xs)
P (ci)

.

∏S
s=1 P (xs)
P (x1:S)

. (2)

By replacing the probabilities P by estimates P̂ , we get a

representation of the Bayesian Fusion (BF):

P̂BF (ci|x1:S) =
∏S

s=1 P (ci|xs)
P (ci)

.η, (3)

where the terms independent of the actual class are replaced

by the normalization factor η:

η =
1

∑M
j=1

∏S
s=1 P (cj |xs)

P (ci)

, (4)

where M is the number of classes. This probability can then

be used in classification by making use of the Maximum A
Posteriori (MAP) rule:

ĉ = argmax
ci∈C

P̂BF (ci|x1:S). (5)

1.2. Weighted Bayesian Fusion

The standard Bayesian Fusion approach does not deal with

varying reliability levels of the input streams. In order to

improve classification performance, several authors have in-

troduced stream weights {λ1, λ2, λ3, ..., λS} as exponents in

Equation 3, resulting in the modified score:

P̂WBF (ci|x1:S) =
∏S

s=1 P (xs|ci)λs

∑M
j=1

∏S
s=1 P (xs|cj)λs

. (6)

In order to determine the weights {λ1, λ2, λ3, ..., λS},

we first need to define reliability measures for the individual

streams. These reliability measures should reflect the qual-

ity of the observation conditions by considering statistical

information conveyed in both prior and current classifica-

tion results. The second step is to find an optimal mapping

between these reliability indicators and the stream weights

{λ1, λ2, λ3, ..., λS}.

This paper develops a method of modality fusion that is

based on reliability. First, we propose two stream reliability

indicators based on the dispersion of the a posteriori proba-

bilities of the observation vectors. These reliability indicators

are then mapped into stream weights using the genetic algo-

rithm, in such a way that maximizes the conditional likeli-

hood. Figure 1 shows an overall diagram of our fusion sys-

tem.
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Fig. 1. Overview of the multimodal fusion system.

2. DISPERSION AS A MEASURE OF RELIABILITY

The first work to ever introduce the dispersion as a measure of

reliability in audio-visual speech recognition systems was that

developed by Adjoudani and Benoit [2]. Since then, this idea

has been further developed by other researchers. In this work,

a dispersion measure developed by Potaminaos and Neti [3]

is used. This measure uses an N-best dispersion method that

is formulated as the difference between each pair of nth-best

hypotheses, and it is given by:

L =
2

N(N − 1)

N∑
n=1

N∑
n′=n+1

(Rn − Rn′), (7)

where N ≥ 2 and Rn is equal to the nth-best hypothesis.

Dispersion measures provide a good estimate of stream con-

fidence, as a large difference in classifier outputs reflects a

greater confidence. Lucey et al. [4] have theoretically proven

that dispersion approximately reflects the cepstral shrinkage

effect induced by additive noise.

2.1. Instantaneous Dispersion

The first reliability measure that we use is the instantaneous

dispersion based on a local frame measurement:

Ls,t = L(log(P (xs,t|cs,t)))

=
2

N(N − 1)

N∑
n=1

N∑
n′=n+1

log
P (xs,t|cs,t,n)
P (xs,t|cs,t,n′)

,
(8)

where L(.) is the N-best log-likelihood dispersion function

defined in Equation 7 and P (xs,t|cs,t) is the observation emis-

sion probability generated by an HMM-based classifier. Here

we choose N = 4 because both Adjoudani and Benoit [2] and

Potamianos and Neti [3] have found that an N-best of 4 has

been the most successful.

2.2. Temporal Dispersion

The instantaneous dispersion measure evaluates the stream

reliability at a frame level. In highly corrupted speech, the

noise will cause the dispersions to vary rapidly. Therefore, it

is hard to judge whether the dispersion changes come from

the varying discriminative powers of the recognizer or from

the ambient noise presented in the multimodal streams. Con-

sequently, the instantaneous dispersion is not sufficient to as-

sess the stream reliability and there is a need for a tempo-

ral reliability measure, that takes into account the previously

observed behavior of the classifier. For this purpose we pro-

pose a second confidence measure that is based on the instan-

taneous dispersion measure. We define this weight function

Rs,t (with backward-looking time step Δt) as:

Rs,t =
q∑

n=1

ρ(n)Ls,t−nΔt + εt, (9)

where q is the window length (chosen here to be equal to 5),

and εt is a white noise process with zero mean and variance

σ2. The ρ(n), n = 1, ..., q, in the range 0 to 1, are parame-

ters that correspond to how rapidly past performance will be

discounted. This factor ρ(n) is largely responsible for deter-

mining the dynamic weights Rs,t, where recent performance

should be weighted highly (large ρ(n)) and past performance

should be gradually forgotten (low ρ(n)). Here the problem

boils down to determining the proper values of ρ(n). We note

from Equation 9 that this temporal dispersion is formulated as

an autoregressive (AR) model. The parameters ρ(n) are thus

calculated using the Yule-Walker equations [5]:

rL(m) =
q∑

n=1

ρ(n)rL(m − n) + σ2
ε δm, (10)

where m = 0, ..., q, yielding q + 1 equations, and rL(m) is

the autocorrelation function of the instantaneous dispersion

series. σε is the standard deviation of the input noise process,

and δm is the Kronecker delta function. Because the last part

of the equation is non-zero only if m = 0, these equations are

usually solved by representing them as a matrix for m > 0:

⎡
⎢⎢⎢⎢⎣

rL(1)
rL(2)

.

.
rL(q)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

rL(0) rL(1) . . rL(q − 1)
rL(1) rL(0) . . rL(q − 2)

. . .

. . .
rL(q − 1) rL(q − 2) . . rL(0)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ρ(1)
ρ(2)

.

.
ρ(q)

⎤
⎥⎥⎥⎥⎦

,

(11)

and we solve for all ρ. For m = 0 we have:

rL(0) =
q∑

n=1

ρ(n)rL(−n) + σ2
ε , (12)
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which allows us to solve σ2
ε . Note that since the Yule-Walker

equations are linear in the coefficients ρ(n), it is a simple

matter to find the coefficients ρ(n) from the autocorrelation

sequence rL(n).

3. STREAM WEIGHT OPTIMIZATION

The next step is to find a mapping between the reliabil-

ity measures (L and R derived in Equations 8 and 9) and

the stream weights (λ1, λ2, λ3, ..., λS). We use a sigmoid

function for this purpose, as chosen by [6], due to the

fact that it is monotonic, smooth and bounded between

zero and one. First we define the reliability vector dt =
[d1,t, d2,t, d3,t, ..., d2S,t] = [R1,t, R2,t, ..., RS,t, L1,t, L2,t,
..., LS,t].

Then, the mapping is defined as:

λs =
1

1 + exp(−∑2S
i=1 ws,idi,t)

, (13)

where Ws = [ws,1, ws,2, ws,3, ..., ws,2S ] is the vector of

the sigmoid parameters for stream s. Since we have S
streams and 2S sigmoid parameters per stream, then we

have S × 2S = 2S2 sigmoid parameters that we need to

optimize. This is a nonlinear optimization problem with a

large number of variables. Consequently, we choose to use

genetic algorithms (GA) to solve this problem and determine

the optimal set of weights. In our GA model, we have S
streams {S1, S2, S3, ..., SS} which require 2S2 parameters

W = {W1, W2..., WS}.

The objective function of the genetic algorithm used in

this experiment is to optimize the system reliability by adjust-

ing the weights. For this purpose we choose our objective

function to be the maximum conditional likelihood (MCL)

estimates of parameters W over the training set. Given an ob-

servation vector x1:S , we first represent the conditional likeli-

hood of class ci by:

P̂WBF (ci|x1:S) =
∏S

s=1 P (xs|ci)λs

∑M
j=1

∏S
s=1 P (xs|cj)λs

. (14)

We then seek the parameters W over a time interval T in the

training set as:

Ŵ = argmax
W

∑
t∈T

log PWBF (ci,t|x1:S), (15)

where ci,t is the class ci at time t. This is subject to the con-

straints:
S∑

s=1

λs = 1, λs ≥ 0. (16)

4. EXPERIMENTAL RESULTS

In order to evaluate the efficiency of the fusion method, clas-

sification experiments for the task of word recognition of iso-

lated digits are conducted. The Tulips1 database is used and

the audio signal is contaminated by adding 5 kinds of noise

taken from the NOISEX database [7]. These different types of

noise are mixed with the audio signal at 8 SNR levels ranging

from -12dB to 30dB (clean speech).

Mel frequency cepstral coefficients (MFCCs) are uti-

lized as observations for the audio stream, constructing a

26-dimensional vector. Audio-only recognition is done using

HMMs. As for the visual front-end, a 12-dimensional visual

feature vector is derived from the independent components of

the optical flow fields. For the acoustic and visual modeling

of the observations, 3-state left-right word Coupled HMMs

with a single 5-continuous-Gaussian observation probability

distribution per stream are used. The models are trained on

clean data.

Figure 2 shows two plots. The top figure plots the instan-

taneous dispersions of both audio and visual streams varying

over a 70-frame time window, where calculations are done at

an SNR of 10dB taken from a speaker in the testing set. From

this plot, it is clear that instantaneous dispersions vary dramat-

ically over time. The bottom figure, on the other hand, plots

the temporal dispersions calculated for the same speaker and

same conditions. The temporal dispersion plot shows more

smoothness in estimating the channel reliability than the in-

stantaneous dispersion plot. This translates into a reliability

estimate that is more robust against noise bursts.

In order to more clearly see this performance improve-

ment, Figure 3 presents the percentage of the correctly clas-

sified words in the isolated-digit recognition task. It shows

5 curves. The “A” curve represents the audio-only speech

recognition classification accuracy shown for baseline com-

parison. The “V” curve represents the video-only speech

recognition classification accuracy. The “AV-Unweighted”

curve is the baseline audiovisual setup in which we use Cou-

pled HMMs with stream weights equal to unity for both

streams. We also provide results with stream weights us-

ing the dispersion as reliability measure and the general-

ized gradient descent as the optimization method [6] (“AV-

Dispersion” curve).

It is clear from these results that both dispersion-based

fusion and fusion using the proposed approach significantly

improve AVSR performance at low SNRs, with the proposed

approach being somewhat superior. To further illustrate quan-

titatively the performance of the proposed approach to fusion,

we compare fusion strategies in terms of their resulting ef-
fective SNR gain. We measure this gain with reference to the

audio-only word classification accuracy at 10dB, by consider-

ing the SNR value where the audiovisual word classification

rate equals the reference audio-only word classification rate.

From Figure 3, this SNR gain is around 10dB for both the

unweighted Bayesian fusion and the dispersion-based fusion.

On the other hand, classification based on the proposed ap-

proach achieves a 16dB improvement, further illustrating the

efficiency of this approach.
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Fig. 2. Instantaneous (top) and temporal (bottom) dispersion

variation at 10dB.
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Fig. 3. Word classification accuracy.

5. CONCLUSION

In this paper, we proposed a new probabilistic reliability as-

sessment model for multiple streams in a multimodal system.

The main benefit of this assessment model is that it takes into

consideration the reliability of the overall system on both a lo-

cal and global level and thus is robust to sudden noise bursts.

In addition, it is a model, which can be generalized for multi-

ple information streams and multiple applications. We devel-

oped two stream reliability indicators based on the dispersion

of N-best hypotheses. The reliability indicators were then

mapped into stream weights using the genetic algorithm, in

such a way that maximized the conditional likelihood. This

optimal scheme is superior to previous approaches because

it is dynamic, easy to implement, and considers an arbitrary

number of streams. Experimental results did show improve-

ments, especially at low SNR levels. Future work can extend

this architecture to consider multiple streams of information

on both an intramodal and intermodal level.
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