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ABSTRACT

In this paper, least square approach is applied in subspace in-

tersection (SI) method for the problem of bearing estimation

in shallow water. Based on that, a method called constrained

least square subspace intersection method (CLS-SI) is pro-

posed. The mathematic expressions of CLS-SI are given. In

addition, the relationship between CLS-SI and MUSIC is dis-

cussed. Simulations show that the performance of the new

method proposed is better than that of the original SI method.

Index Terms— DOA estimation, least square method,

underwater acoustic arrays

1. INTRODUCTION

Many direction-of-arrival (DOA) estimation methods are un-

der an assumption that signals propagate as plane-wave form

in medium. However, this assumption is not always accu-

rate in the ocean especially in shallow ocean since sound can

stimulate multiple normal modes when it propagates in shal-

low ocean [1]. For this reason, plane-wave DOA estimation

techniques yield biased bearing estimation in the ocean. In

physics, it could be explained that different modes have dif-

ferent phase speeds [2] (also mean different wavenumbers).

This phenomenon is especially remarkable when differences

of phase speeds between different modes are notable ( this

often happens in low frequency source and some shallow wa-

ter environments ). To reduce the bias in bearing estimation,

matched field processing methods [2] [3] are applied. But

this kind of methods has two disadvantages. Firstly, they

have very heavy computation. Secondly, they are sensitive

to parameters of the ocean environments. Recently, a method

named subspace intersection(SI) was proposed by S. Laksh-

mipathi and G. V. Anand [4] for bearing estimation. It reduces

the computation. Besides, it requires to know the wavenum-

bers of various normal modes rather than exact environmental

parameters. However, this SI method uses QR factorization
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to construct a bearing estimation function, which is not stable

when the matrix is close to being singular.

In this paper, we introduce least square method into the SI

method and present the constrained least square SI (CLS-SI)

method which is more stable than the original SI method.

2. SIGNAL MODEL

The signal model used is the same as that described in [4].

Horizontally stratified ocean model is used. Without loss of

generality, we consider a uniform linear horizontal array lo-

cated at depth z with N elements and spacing d between ele-

ments. There are J mutually uncorrelated narrowband sources

of center frequency f0. Suppose the jth source is located

at depth zj , ranges rj with respect to the first array element

and bearing θj with respect to the broadside direction of the

horizontal array. According to the Normal Mode Theory [5],

sound pressure impact on the nth (n=1,2,...,N ) sensor by the

jth source could be expressed as

pjn =
M∑

m=1

bmje
i(n−1)kmd cos θj (1)

Where

bmj =

√
2π

kmrj
Ψm(zj)Ψm(z)e−ikmrj−βmrj+iπ/4 (2)

M is the total number of the normal modes, Ψm(z), km and

βm are the eigenfunction, wavenumber and attenuation co-

efficient of the mth normal mode, respectively. So the nth

element receives the signal by the jth source could be repre-

sented by

sjn = pjnη(t)ei2πf0t (3)

where η(t)is the envelop of the jth source. Therefore the

output of the array could be expressed as

y(t) = P(X)η(t) + n(t) (4)
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where y(t) = [y1(t), y2(t)..., yN (t)]T , yn(t) is the output of

the nth element. η(t) = [η1(t), η2(t), ..., ηj(t)]T , n(t) =
[n1(t), n2(t), ..., nN (t)]T is the array noise vector. Suppose

η(t) and n(t) are two independent Gaussian distributed pro-

cesses and both are with zero mean and unit variance. X =
[xT

1 ,xT
2 , ...,xT

j ] denote unknown position parameters and xj

= [θj , rj , zj ]T (j=1,2,...,J). P(X) = [p(x1),p(x2), ...
p(xj)] and p(xj) = [pj1, pj2, ..., pjN ]T . p(xj) could also

be expressed as

p(xj) = A(θj)b(rj , zj), (j = 1, 2, ..., J) (5)

where b(rj , zj) = [b1j , b2j , ...bMj ](j = 1, 2, ..., J) are the

amplitudes of normal modes excited by the same source, A(θ)
= [a(k1 cos θ),a(k2 cos θ), ...,a(kM cos θ)]. where a(km

cos θ) = [1, eikmd cos θ, ..., ei(N−1)kmd cos θ]T is the steering

vector with respect to the mth mode.

Actually, it could be concluded that each mode is in plane-

wave form and signals received by array are the summation of

all modes and all sources. In this paper, the wavenumbers of

different normal modes are supposed known, since wavenum-

bers could be precisely estimated by some existing methods

[6] etc.

3. REVIEW OF SI METHOD

The idea of SI method [4] is concise. Suppose S = span{
p(x1),p(x2), ...p(xJ)} is the signal subspace and M(θ) =
span{a(k1 cos θ),a(k2 cos θ), ...,a(km cos θ)}(θ ∈ [0, π]).
Then S ⋂M(θ) �= 0 if and only if θ ∈ {θ1, θ2, ..., θJ}. S
could be obtained by decomposing the covariance matrix

R = E[y(t)yH(t)] = [p(x1),p(x2), ...,p(xJ)]Rs[p(x1),

p(x2), ...,p(xJ)]H + σ2I (6)

Assume Rs = E[η(t)ηH(t)] is a full rank matrix. Let u1,u2,
...,uN indicate the unit-norm eigenvectors of R arranged in

a descending order with respect to the value of their eigenval-

ues. Thus, S = span{u1,u2, ...,uJ}. The SI method could

be described as follows [4]:

(1) Estimate the covariance matrix R̂ from samples.

(2) Compute the eigenvectors of R̂ to get û1, û2, ..., ûJ ,
ûJ+1, ûJ+2, ..., ûN , Ûs = [û1, û2, ..., ûJ ] and Ûo = [ûJ+1,
ûJ+2, ..., ûN ].
(3) Construct D̂(θ) = [ 1√

N
A(θ), Ûs] and do the QR factor-

ization to get D̂(θ) = q̂(θ)r̂(θ). Let r̂jj indicate the diagonal

elements of r̂(θ).
(4) Compute the function BSI(θ) = [ min

M+1≤j≤M+J
r̂2
jj ]

−1.

The locations of the peaks correspond to the bearing of sources.

4. LEAST SQUARE SUBSPACE INTERSECTION
METHOD

From Section 3, we can see that S. Lakshmipathi and G. V.

Anand [4] use the QR decomposition to implement subspace

intersection. Actually, the idea of subspace intersection could

also be understood that there exist vector x(M×1) and y(J×
1), for θ ∈ θ1, θ2, ..., θJ

A(θ)x = Usy (7)

Therefore, we could construct bearing estimation function via

equation (7). Because there always exist error between Us

and Ûs due to finite samples and noise, equation(7) does not

hold strictly. However, from the perspective of least square,

equation(7) could be written as

||A(θ)x − Usy||22 = 0 (8)

where ||, ||2 denotes Euclid norm.

4.1. Constrained least square SI(CLS-SI) method

Obviously, x = y = 0 is the trivial solution of (8). Therefore,

x and y should be constrained. It is convenient to let x or y
be a unit vector. In this paper, we define ||y|| = 1. Finally,

the question is changed as a constraint satisfaction problem

that could be stated as

min
x,y

||A(θ)x − Ûsy||2, subject to||y|| = 1 (9)

For convenience, θ is omitted in derivation. Use Lagrange

multiplier method to construct function

J(x, y) = ||A(θ)x − Ûsy||22 + Re{μ(yHy) − 1} (10)

then
∂J

∂x∗ = AHAx − AHÛsy = 0 (11)

∂J

∂y∗ = (μ + 1)y − ÛH
s Ax = 0 (12)

Perform a left multiply on both sides of equation(12) by yH

and utilize the constraint ||y|| = 1 to get

μ = yHÛH
s Ax − 1 (13)

Therefore, substitute μ into (12) with (13)

ÛH
s Ax = yHÛH

s Ax · y (14)

From (11), we could see that

x = (AHA)†AHÛsy (15)

Where † denotes Moore-Penrose inverse. Use (15) to replace

x in (14) to get

ÛH
s A(AHA)†AHÛsy = yHÛH

s A(AHA)†AHÛsy · y
(16)

Let

C = ÛH
s A(AHA)†AHÛs = ÛH

s PAÛs (17)
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where PA = A(AHA)†AH is a projection matrix. Plugging

(17) into (16), we find that

Cy = yHCy · y (18)

Substitute (15) into ||Ax − Ûsy||22
||Ax − Ûsy||22 = ||[PA − I]Ûsy||22 = 1 − yHCy (19)

From (18) it could be deduced that yHCy is the eigenvalue

according to C. Therefore

min
x,y

||Ax − Ûsy||22 = 1 − λmax(C) (20)

where, λmax(C) denotes the largest eigenvalue of C
Thus, the bearing estimation function could be constructed as

BCLS−SI(θ) =
1

1 − λmax(C(θ))
(21)

4.2. Relation between MUSIC and CLS-SI

In this subsection, we will prove that CLS-SI could be inter-

preted as an extension of MUSIC [9] to multipath environ-

ments. Suppose A(θ) could be orthogonalized as

A(θ)T(θ) = Vs(θ) (22)

where T(θ) is a full rank square matrix.

Substituting equation(22) into equation(21), we get

BCLS−SI(θ) =
1

1 − λmax(ÛH
s Vs(θ)VH

s (θ)Ûs)
(23)

Assume Vo(θ) is an orthogonal basis of M⊥ which denotes

the orthogonal subspace of M (M = span{A(θ)} = span
{Vs(θ)}). There exist Vo(θ)HVs(θ) = 0 , Vs(θ)Vs(θ)H +
VoVo(θ)H = I. According to the characteristic of matrix

2-norm

λmin(ÛH
s Vo(θ)VH

o (θ)Ûs) = 1 − λmax(ÛH
s Vs(θ)VH

s (θ)

ÛH
s ) = 1 − ||VH

s (θ)Ûs||22 (24)

λmin(VH
s (θ)ÛoÛH

o Vs(θ)) = 1 − λmax(VH
s (θ)ÛsÛH

s

Vs(θ)H) = 1 − ||ÛH
s Vs(θ)||22 (25)

where Ûo is defined in Section 3. Therefore

λmin(ÛH
s Vo(θ)VH

o (θ)Ûs) = λmin(VH
s (θ)ÛoÛH

o Vs(θ))
(26)

Thus, equation(23) could be written as

BCLS−SI(θ) =
1

λmin(ÛH
s Vo(θ)VH

o (θ)Ûs)

=
1

σ2
min(ÛH

s Vo(θ))
(27)
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Fig. 1: Channel parameters

where σ(A) denotes singular value of matrix A. Plugging

equation (26) into equation (27), we get

BCLS−SI =
1

σ2
min(VH

s (θ)Ûo)
(28)

When only one normal mode wave dominates, there exists

Vs(θ) = A(θ) = a(k1 cos θ/
√

(N)). In this situation, equa-

tion (28) could be written as

BCLS−SI =
N

aH(k1 cos θ)ÛoÛH
o a(k1 cos θ)

(29)

Equation (29) is the same as the MUSIC [9] spectral formula

except for the constant factor N .

In summary, CLS-SI is an extension for multiple normal

modes of MUSIC and they are equal when only one normal

mode wave dominates.

5. SIMULATION

The differences between SI methods and plane-wave meth-

ods are more remarkable when the wavenumber of each nor-

mal mode differs widely [2]. We simulate a condition on the

base of actual environment in Yellow Sea [7] as shown in

Fig.1. The channel parameters are as follows. Ratios of den-

sity of sediment layers and bottom are ρ1 = 1.5g/cm3,ρ2 =
1.8g/cm3,ρ3 = 2.0g/cm3; the coefficients of attenuation

are α1 = α2 = 0.2dB/λ, α3 = 0.4dB/λ; sound speed

in water is c = 1543m/s, sound speeds in sediment lay-

ers are c1 = 1600m/s, c2 = 1650m/s, c3 = 1700m/s,

c4 = 2000m/s; water depth is H = 4.5m, depth of sediment

layers are H1 = 10m, H2 = 10m. Uncorrelated sources of

frequency 150Hz are located at range 5km. The signal-to-

ratio(SNR) is defined as [4]

SNR = 10 log10

N∑
n=1

J∑
j=1

σ2
j |pjn|2

Nσ2
(30)
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Fig. 2: Probability to distinguish two sources located at 20◦

and 25◦
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Fig. 4: Probability of appearing spurious peak for sources

located at 80◦ and 85◦

where σ2 is the variance of the zero-mean Gaussian noise

and σ2
j = E[|ηj(t)|2] The uniform linear array has 30 ele-

ments with interelement distance d = 4m. Acoustic fields

are computed by Kraken program [8]. In all simulations,

snapshots are 1000. Fig.2 shows the ability of SI and CLS-SI

to distinguish two sources located at 20◦, 25◦ respect to dif-

ferent SNR. From Fig.2, we could see that CLS-SI is about

ten percentage higher than SI to distinguish the two targets

when SNR is lower than 7dB. Fig.3 shows that CLS-SI has a

smaller bias ( difference between estimated bearing and real

bearing ) in bearing estimation. Figs.2-3 demonstrate that

CLS-SI could improve resolution in endfire direction.

When θ is close to 90◦, the columns of A(θ) would not be

linear independent and D̂(θ) = [ 1√
N

A(θ), Ûs] would be ill-

conditioned. Thus, in some bearing θf where no source is lo-

cated would also appear a spurious peak due to rjj(θf ) → 0.

In addition, rjj(θf ) is the denominator in the process of QR

factorization [4], this also would reduce the stability of the SI

method. Fig.4 shows that SI could not avoid the spurious peak

while CLS-SI could dramatically decrease the probability of

spurious peak especially in high SNR.

In summary, CLS-SI method determines the largest eigen-

value instead of QR decompositon in SI method. In addition,

Moore-Penrose inverse is applied. These improvements en-

hance the performance of CLS-SI.

6. CONCLUSIONS

CLS-SI approach is more stable than the original SI

method. Firstly, it increases the resolution near the endfire

direction. Secondly, it enhances the ability in eliminating the

spurious peak around the 90◦ direction of the array.
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