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ABSTRACT
In this article we introduce a sequential procedure for detect-
ing a target using distributed sensors in a two dimensional
region. The detection is carried out in a mobile fusion
center (in a way familiar to hockey fans, we envision
this as a Zamboni machine) which successively counts the
number of binary decisions reported by local sensors lying
inside its eld of view. The proposed sequential detection
procedure is based on a two-dimensional scan statistic –
this is an emerging tool from the statistics eld that has
been applied to a variety of anomaly detection problems
such as of epidemics or computer intrusion; but that seem
to be unfamiliar within the signal processing community.
Analytical and simulation results are presented for system-
level detection.

Index Terms— Sensor network; scan statistics; sequential
detection.

I. INTRODUCTION
I-A. Sensors Networks with Mobile Agents
In [1] [2] the authors propose an appealing architecture for

sensor networks in which information is accumulated in a
traveling “rover,” which sequentially queries the sensors that
fall in its current (and changing) eld of view. The Mobile
Agent (MA), playing the role of the fusion center, takes the
nal decision about the presence of the target. There are
sequential versions of this (e.g., [3]) that seek to use an
MA to decide as quickly as possible which among a pair of
hypotheses is true. However, the hypothesis is homogeneous:
either H0 is true at all sensors or H1 is uniformly true. More
realistically, a target is a local disturbance, and a MA-based
anomaly detector is what is sought. Here we provide one: a
sequential test in two dimensions via a scan statistic.

I-B. Scan Statistics
The detection and analysis of clustering of events is of

great importance in many areas of science and technology in-
cluding: epidemiology [4], bionformatics [5], biosurveillance
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[6], ecology [7], medicine [8], quality control and reliability
[9]. Theory and applications of scan statistics, as well as
recent advances, have been presented in [10], [11] and [12].
Since in this article we employ a scan statistic for observed
counts of signals in a two dimensional region, we introduce
below a two dimensional scan statistic.
Assume that a two-dimensional rectangular region R =

[0, T1] × [0, T2] is under surveillance. Let hi = Ti

Ni
> 0,

where Ni are positive integers, i = 1, 2. For 1 ≤ i ≤ N1

and 1 ≤ j ≤ N2, let Xij be the number of events that
have been observed in the rectangular subregion (cells)
[(i − 1)h1, ih1] × [(j − 1)h2, jh2]. We are interested in
detecting unusual clustering of these events under the null
hypothesis thatXij are i.i.d. Bernoulli random variables with
P (Xij = 1) = p0, where 0 < p0 < 1. For 1 ≤ i1 ≤
N1 −m1 + 1 and 1 ≤ i2 ≤ N2 −m2 + 1 de ne:

Yi1,i2 =
i2+m2−1∑

j=i2

i1+m1−1∑
i=i1

Xij (1)

to be the number of events in a rectangular region com-
prising m1 by m2 adjacent rectangular subregions with
area h1h2 and the south-west corner located at the point
((i1 − 1)h1, (i2 − 1)h2). If Yi1,i2 exceeds a preassigned
value of k, we will say that k events are clustered within
the inspected region. We de ne a two-dimensional discrete
scan statistics as the largest number of events in any m1 by
m2 adjacent rectangular subregions with area h1h2 and the
south-west corner located at the point ((i1−1)h1, (i2−1)h2):

Sm1×m2;N×N = max {Yi1,i2 ;
1 ≤ i1 ≤ N1 −m1 + 1, 1 ≤ i2 ≤ N2 −m2 + 1} (2)

We assume that N1 = N2 = N and m1 = m2 = m for
simplicity. We also abbreviate Sm×m;N×N to Sm×m.
The scan statistics Sm×m, de ned in equation (2) are

used for testing the null hypothesis of randomness that
assumes the X ′

ijs are i.i.d. Bernoulli random variables with
P (Xij = 1) = p0, where 0 < p0 < 1. For the alternative
hypothesis of clustering we assume a rectangular subregion
in which Xij with P (Xij = 1) = p1 > p0.
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For small and moderate values of P (Sm×m ≥ k) a quite
accurate approximation has been derived in [13]:

P (Sm×m ≥ k) ≈

1−
[

[P {Sm×m(m,m) ≤ k − 1}](N−m−1)2

[P {Sm×m(m,m + 1) ≤ k − 1}]2(N−m−1)(N−m)

]

× [P {Sm×m(m + 1,m + 1) ≤ k − 1}](N−m)2 (3)

where:

P {Sm×m(m,m) ≤ k − 1} = Fb(k − 1; m2, p0) (4)

P {Sm×m(m,m + 1) ≤ k − 1}

=
k−1∑
s=0

F 2
b (k − 1− s; m, p)b(s; m(m− 1), p0) (5)

P {Sm×m(m + 1,m + 1) ≤ k − 1}

=
k−1∑

s1,s2=0

k−1∑
t1,t2=0

1∑
ij=0,1≤j≤4

b1(s1)b1(s2)b2(t1)b2(t2)

× p
�4

j=1 ij

0 (1− p0)4−
�4

j=1 ij Fb(x; (m− 1)2, p0) (6)

where for i = 1, 2,

b1(si) = b(si; m− 1, p0) (7)
b2(ti) = b(ti; m− 1, p0) (8)

b(j; N,w) =
(

N

j

)
wj(1− w)N−j (9)

Fb(i; N,w) =
i∑

j=0

b(j; N,w) (10)

x = min(k − 1− s1 − t1 − i1, k − 1− s2 − t1 − i2,

k − 1− s2 − t1 − i2, k − 1− s1 − t2 − i3,

k − 1− s2 − t2 − i4) (11)

Further approximations for P (Sm×m ≥ k) are discussed in
great detail in [11].
The key point is that while the exceedance probability for

one location of the window of (2) is trivial, and similarly
for many non-overlapping windows it is easy, to obtain a
most powerful GLRT we need to “drag” the window as
with the Zamboni. The exceedance probability for (2) is not
at all obvious for overlapping windows, but that is exactly
what the scan statistics literature provides. The contribution
and importance of scan statistics is their ability to do that,
to provide an answer to the question: “How many counts
constitute an abnormality?”

II. TARGET DETECTION USING
TWO-DIMENSIONAL SCAN STATISTICS

II-A. Model
Let us consider a scenario, where a grid of M sensors

is deployed in the sensor eld, which we consider to be a

Fig. 1. The MA is depicted as a Zamboni machine and its eld
of view as a square of size Fov . Only the sensors which detect
the target are depicted. The different level curves correspond to a
different target power. The Zamboni machine travelling across the
sensor network simply counts how many sensors are inside its eld
of view. We assume that the target is uniformly distributed within
the sensor network.

square of area b2. A mobile rover (Zamboni machine) travels
across the sensor network, see Figure 1, collecting the local
decision from sensors which lie inside its eld of view, which
we consider to be a square of size Fov . Assuming we know
the total number M of sensors, we divide the square into
M small subsquares. The location of the sensor inside each
small subsquare (cell) is known1. Let us denote with (xs, ys)
with s = 1, . . . , M the coordinates of sensor s.
Noises at local sensors are i.i.d. and follow the standard

Gaussian distribution with zero mean and variance σ2
w:

ws = N (0, σ2
w) s = 1, . . . , M (12)

We assume that sensors make their local decisions indepen-
dently without collaborating with other sensors. We design
each sensor s to decide between the following (composite)
hypotheses

H0 : rs = ws (13)
H1 : rs =

as

ds
+ ws

where rs is the received signal at sensor s, as are i.i.d. GRV
(Gaussian random variables) with zero-mean and variance
σ2 (σ2 represents the power of the signal that is emitted by
the target) and ds is the distance between the target and local
sensor s:

ds =
√

(xs − xt)2 + (ys − yt)2 (14)

1Our results hold more generally: we do not need to know the exact
location of the sensor inside the cell. We can also assume that the location
of the sensor follows a uniform distribution in the cell.
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and (xt, yt) are the unknown coordinates of the target. We
further assume that the location of the target also follows a
uniform distribution within the sensor eld.
Assuming all the local sensors use the same threshold

τ to make decision and according to the Neyman-Pearson
lemma [14], we have the local sensor-level false alarm rate
and probability of detection given by:

pfa = 2Q
(√

τ

σ2
w

)

pds = 2Q

⎛
⎝√

τ

σ2
w + σ2

d2
s

⎞
⎠ (15)

where Q(·) is the unit Gaussian exceedance function. We
denote the binary data from local sensor s as Is = {0, 1}
(s = 1, . . . , M). Is takes the value 1 when there is a
detection; otherwise, it takes the value 0.

II-B. Results
In Section II-A we introduced the sensor network and we

modeled it as a square of area b2. Letting h = b
N , where N

is such that N2 = M , we divide the square of area b2 intoM
cells such that in each cell of area h2 there is only one sensor.
Let us denote by c(i, j) the cell [(i−1)h, ih]×[(j−1)h, jh].
We de ne Xij as the binary data from the local sensor s
inside c(i, j) with 1 ≤ i ≤ N and 1 ≤ j ≤ N . It is easy to
verify that

M∑
s=1

Is =
N∑

j=1

N∑
i=1

Xij (16)

For 1 ≤ i ≤ N and 1 ≤ j ≤ N , let us denote with X0
ij = Is

(X1
ij = Is) be the number of events that have been observed

in the cell c(i, j), under the hypothesis H0 (H1). X l
ij , with

l = {0, 1}, represents the binary data (”1” or ”0”) from the
sensor inside the cell c(i, j). It is straigthforward thatX0

ij are
i.i.d. Bernoulli random variables with P

(
X0

ij = 1
)

= pfa,
whereas X1

ij are discrete independent random variables but
not identically distributed with P (Xij = 1) = pds

2.
Now we assume that under H1, pds

can be approximated
with pfa for a sensor s whose distance to the target is such
that d2

s >> σ2

σ2
w
. In fact we have that

pds = 2Q

⎛
⎝√

τ

σ2
w + σ2

d2
s

⎞
⎠ ≈ 2Q

(√
τ

σ2
w

)
= pfa (17)

for d2
s � σ2/σ2

w. Since the target power attenuates as
function of the distance from the target, we expect that there
is a cluster of sensors which are stronger (closer to the
target), under the hypothesis H1. When mh, the window
size in which the change of probability of a monitored event
has occurred, is known, the scan statistics Sm×m, de ned in

2pds is greater than pfa, but is otherwise unknown.
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Fig. 2. Probability of false alarm for the zamboni Pfa versus
probability of false alarm for the local sensor pfa. Here we have
b = 5, σ2 = 1, σ2

w = 4,M = 625, k = 7, fov = 6 and Fov = 1.2.

equation (2), is a generalized likelihood ratio test statistic for
testing the above hypotheses [15]. We note, of course, that
for us this region is fuzzily-de ned (and probably round)
according to (14); the question of the best eld-of-view
Fov = fovh size (or multiple sizes) to use is addressed in
[16].
In Figure 2 we have plotted the global probability of false

alarm Pfa for the Zamboni versus the local probability of
false alarm pfa. In Figure 2, the curves obtained by using
the scan statistic approximations in equation (3) and those by
simulations (based on 5000 Monte Carlo runs) are plotted.
Figure 2 shows that the approximation in equation (3) is very
accurate for small values of Pfa as we expected from the
approximations of Scan Statistic theory.
Now we want to compare the performance of our model to

that of the counting decision fusion rule, which is based on
the total number of local detections from local sensors [17].
As proposed in [18], the decision is made by rst counting
the number of detections made by the local sensors in the
surveillance region and then comparing it to a threshold T :

Λ =
M∑

s=1

Is =
N∑

j=1

N∑
i=1

Xij

{ ≥ T decide H1,
< T decide H0,

(18)

where Xij = {0, 1} is the local decision made by sensor s
which is located in the cell c(i, j).
In Figure 3, the ROC curves obtained by simulations

(based on 1000 Monte Carlo runs) for the counting rule
and the scan statistic test are shown. We can see that the
ROC curves corresponding to the counting rule and those of
the scan statistic test are pretty close and actually the scan
statistic test seems to outperform the counting fusion rule.
The ROC performances of the scan test are equivalent to
those of the counting rule in the limit case when the size of
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Fig. 3. ROC curves obtained by simulations for different values
of the size of the eld of view fov . Here we have M = 625,
SNR = σ2

σ2
w

= 1
4
. Simulation are based on standard Monte Carlo

counting process, involving 5000 runs. .

the Zamboni eld of view is equal to the size of the sensor
network, that is Fov → b.

III. CONCLUSIONS AND FUTURE DIRECTIONS

We have proposed and studied a new sequential test, a
two-dimensional scan statistics, that is based on the max-
imum number of detections reported by local sensors that
the Zamboni observes in its eld of view. We have shown
how the system parameters can affect the detection per-
formance. Numerical results, compared with the theoretical
ones corroborate our analysis. An important result is that the
proposed fusion rule outperforms the counting fusion rule,
which requires the total number of detections in the sensor
network. To the best of our knowledge we are not aware
of any work on the sequential detection in two dimensions
in sensor networks. Future work includes assuming that
the sensors are in a Poisson eld; and Multiple Window
Discrete Scan Statistics [19] can also be used to improve
the performance of the proposed detection procedure.
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