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ABSTRACT

A microphone array can be employed to localize dominant
acoustic sources in a given noisy environment. This capa-
bility is successfully used in good signal to noise ratio (SNR)
conditions but its accuracy decreases considerably in the pres-
ence of other background noise sources. In order to counter-
act this effect, a novel approach that combines the information
provided by a Gaussian energy detector (GED) [1] with the
approved localization method SRP-PHAT [2] is presented in
this paper. To evaluate the presented technique, several acous-
tic sources (speech and impulsive sounds) were considered in
a variety of different scenarios to demonstrate the robustness
and the accuracy of the system proposed.

Index Terms— energy detector, background noise sup-
pression, SRP-PHAT, acoustic localization.

1. INTRODUCTION

There are a lot of areas, in which acoustic scene analysis is re-
quired. One of the most important is the interaction between
man and machine. Such situations occur e.g. in scenarios
where a human cooperates with a so called humanoid robot,
or is assisted by one [3]. In this case several active sound
sources can exist in the robots proximity, for example in a
kitchen, which contains many different appliances that can be
acoustically observed. However, the presence of background
noise normally decreases the performance of the detection
and the localization of desired sound sources. The goal of
the detection theory is to be able to decide when an event of
interest takes place and then to collect more information about
it. The detection problem is directly related to the knowledge
of the signal we are interested in and the background noise
characteristics. The easiest case would be to detect known
events in a stationary white Gaussian background noise envi-
ronment. The detector under these considerations is known as
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a matched filter. When the sound sources are not completely
known, the design of the appropriate detector is more difficult.
An example is speech, for which the waveform of a speaker
is completely unpredictable and depends on many factors. In
this case energy detection is of interest in detecting depar-
tures from a known background due to imprecisely defined
changes (event or novelty detection) [1, 4]. However, in real
situations the acoustic events are corrupted by non-stationary
and non-white background noise caused, for example, by the
fans placed in the robot or by kitchen appliances.
This paper is organized as follows. Section 2 presents the

principles of the Gaussian energy detector and in Section 3
the localization algorithm used is described. In Section 4 the
combination of both techniques is presented, in Sections 5
and 6 the experimental setup and achieved results are shown.
Finally, the conclusion of our work is summarized in the last
section.

2. ENERGY DETECTOR

The simplest detection problem is to decide whether a signal
is embedded in noise or if only noise is present. One common
method for detection of unknown signals is energy detection,
which measures the energy in the received waveform over a
specified observation time.
More formally, energy detectors are optimum solutions

for both, Bayes and Neyman-Pearson criteria, for the follow-
ing detection problem [1]:

H0 : y = w w : N(0, σ2
wI)

H1 : y = s+ w s : N(0, σ2
s I),

(1)

where y is the observation vector (dimensionN ), s is the sig-
nal vector andw is the noise background vector. In model (1),
both the noise and the signal are considered zero-mean mul-
tivariate Gaussian random vectors with uncorrelated compo-
nents. σ2

w and σ2
s are the noise and the signal variances. The
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optimum test for (1) is:

yT y
σ2
w

H1
>
<
H0

λ, (2)

where the statistic yT y
σ2
w
is chi-squared distributed with N de-

grees of freedom (χ2
N ) and λ can be set for a specific proba-

bility of false alarm (PFA). Resuming, the energy detector is
optimum to detect zero-mean uncorrelated Gaussian signals,
and is a generalized likelihood ratio test (GLRT) detector to
detect any unknown deterministic signal. In both cases, w
must be zero-mean uncorrelated Gaussian noise.

2.1. Non-independent background noise

The test (2) assumes that the components of w are i.i.d. (in-
dependent and identically-distributed). However, real audio
signals do not have white noise properties, as adjacent audio
samples are highly correlated. In this case some additional
preprocessing is required to significantly increase the detec-
tion performance.
In this work, the background noise is assumed to be Gaus-

sian and additive with zero mean. In this case, independence
and uncorrelation are equivalent, hence simple prewhitening
is sufficient and the original observation vector y is trans-
formed into a prewhitened observation vector y p by means
of

yp = R−1/2
w y, (3)

where Rw = E
[
wwT

]
is the noise covariance matrix, which

can be estimated from a training set of noise vectors {wk}, k =
1 . . .K using the sample estimate

R̂w =
1
K

K∑
k=1

wkwT
k . (4)

The test (2) can be rewritten as

yT
p yp

σ2
wp

H1
>
<
H0

λ ⇔ yTR−1
w y

H1
>
<
H0

λ. (5)

Note that Rw = E
[
wpwT

p

]
= I and hence σ2

wp
= 1. The

prewhitening transformation whitens and mean-power calcu-
lation normalizes the original observation noise. However,
one consideration is pertinent for the design of energy detec-
tors: the components of wp must be not only independent
but also identically distributed. The set of training observa-
tion noise vectors {wk}, k = 1 . . .K is grouped in the ma-
trix W =

[
w1 . . .wK

]
. In the following it is assumed that

{wk} denotes independent vector observations. In practice
this implies that the vectors {wk} must correspond to non-
overlapped (and rather well separated) segments of the noise
record, or, preferably, that different noise records for every
wk are used.

R̂
−1/2

w

yT
p yp

σ2
wp

H1

H0

> λ

< λ

Decision

Energy

y yp

Pre-whitening estimation

Ep

Fig. 1. Block diagram of an energy detector.

In Figure 1 the complete energy detector procedure is de-
picted. The acoustic signal is divided into frames y of size
N and then these observed vectors are linearly transformed
(R̂w), so that a new white vector yp is obtained. After that,
the energy of the prewhitened data is calculated and compared
with a threshold fixed by the PFA.

2.2. Non-stationary background noise

Energy detection principles have been described in the previ-
ous section, however the whitening process described in (4)
and (5) assumes stationarity in the background noise environ-
ment. This assumption is not always correct and could con-
siderably reduce the performance of the energy detector when
used in real scenarios where the characteristics of the noise
considerably change over the time. For that reason, knowl-
edge about the noise altering the desired sound sources at any
time is important in order to adapt the estimation of R̂w dy-
namically, making our decision even more robust in the pres-
ence of background noise.
For that purpose, the initial estimation of instationary noise

covariancematrix must be computed and then the lastK noise
vectors (according to our energy detector decision), saved in
matrix W, are used to reestimate R̂w every T seconds. This
period of time (T) will depend on the characteristics of the
noise and specially on its stationarity.

3. LOCALIZATION

Today two approaches for acoustic localization are mainly
used. The first is based on the estimation of the time differ-
ence of arrival (TDOA) of sound signals in a pair of spatially
separated microphones. The most common technique for the
determination of TDOAs is the generalized cross correlation
(GCC). The GCC functionR

(g)
ij (τ) is defined as

R
(g)
ij (τ) =

∫ +∞

−∞
ψij(ω)Xi(ω)Xj(ω)∗ejωτ dω, (6)

where Xi(ω) is the Fourier-Transforms of given microphone
signals. ψij is a weighting function which intends to decrease
the noise and reverberation influences and tries to emphasize
the GCC peak at the true TDOA. For real environments, the
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Phase Transform (PHAT) technique has shown the best per-
formance [5]. The PHAT weighting function is defined as

ψPHAT
ij (ω) =

1
|Xi(ω)Xj(ω)∗| (7)

and can be regarded as a whitening filter.
The other well known technique for the acoustic localiza-

tion is the so called Power Field (PF), also known as SRP
(Steered Response Power) [2]. In this approach, beamform-
ing is used to focus a microphone array to a specific spatial
area. Using SRP, it is possible to “scan” the environment to
search for the spatial position with the highest acoustic power
in order to find the exact position of a sound source.
A combination of both techniques mentioned before leads

to a method called SRP-PHAT, which fuses the stability of
the SRP against reverberations and the efficiency of the GCC
method which gives us the possibility to build a real time ca-
pable system. At a given time t, SRP-PHAT is computed as

P (t, s) =
1

|Mp|
∑

(i,j)∈Mp

R
(g)
ij (t, τij(s)), (8)

where τij(s) denotes the theoretical delay between the micro-
phones in pair (i, j) for the assumed spatial source position
s = (sx, sy, sz). Mp represents a given set of microphone
pairs. To estimate the source position ŝ(t) at time t, the posi-
tion of the maximal value in P (t, s) has to be found in a given
search space S:

ŝ(t) = argmax
s∈S

P (t, s). (9)

4. BACKGROUND NOISE SUPPRESSION

In a kitchen scenario, background noise like the fan of an air
conditioner or long lasting sounds of kitchen appliances is
ubiquitous. Depending on the type of sound, the correlation
of the background noise could be higher than the correlation
of the desired sound source to be localized. Therefore, this
problem can commonly lead to a high amount of mislocaliza-
tion. To avoid this, a method to suppress these background
noise sources was developed by using an adaptive Gaussian
energy detector (GED) described in section 2.
To suppress the background noise, it is necessary to col-

lect information about it. By using the energy detector it is
possible to distinguish between a stationary background noise
source and another active source. Therefore, when no desired
sound source is detected our system estimates SRP-PHAT of
the current background noise (P(t, s)) and stores it in a buffer
B(i, s) of size H where i = 1, . . . , H . When a desired sound
source is detected the mean of the last H SRP-PHAT com-
putations of the noise, stored in the buffer, is computed and
subtracted from the current SRP-PHAT estimation in the fol-

lowing way:

P (BNS)(t, s) = P (t, s) − 1
H

H∑
i=1

B(i, s), (10)

where the resulting Power-Field P (BNS)(t, s) at time t is es-
timated using background noise suppression (BNS). To esti-
mate the sound source position ŝ(n)(t), the same maximum
search as described in (9) is used.

5. EXPERIMENTAL SETUP

To evaluate the performance of the combined technique ex-
plained in the previous sections and the improvement intro-
duced in the localization phase in comparison to the case with-
out background noise suppression, two recording sets were
tested. In the first one, the performance of the presented lo-
calization system was assessed when a speaker was active
in several room positions. For better evaluation of the sys-
tem proposed, a second signal source was conceived using
a toaster as an impulsive sound source. Three kinds of typ-
ical kitchen background noise sources were studied in each
setup in order to simulate different signal to noise ratios and
to evaluate the system ability to ignore the noise source, once
it was localized for the first time. In the first scenario (S1)
only the desired sound source without any additional back-
ground noise was recorded. In the second one (S2) a fan was
additionally used as a background noise, and in the third sce-
nario (S3) a kitchen grinder was activated in addition to the
fan in S2.
The microphone array used for our experiments was built

according to the head geometry of a humanoid robot and con-
sisted of four omni-directional electret condensermicrophones.
It is roughly an inverse t-shape geometry with a total width of
20 cm and a height of 5.5 cm. The data was acquired by using
a multichannel audio data acquisition unit with the sampling
frequency of 48 kHz. The window size used for the Gaussian
energy detector was about 5 ms (256 samples), the amount of
noise vectors required to estimate the whitening matrix was
1000 with a reestimation period of 2 seconds. For the SRP-
PHAT method a frame size of about 170 ms (8192 samples)
was used. The source position was estimated by means of a
3D grid search with grids of 5 cm and a total grid dimension
of 3 m x 3 m x 2 m.
To measure the accuracy of the proposed approach, 60

seconds of audio data were acquired for each of the three de-
fined scenarios. About 45 seconds of natural human speech,
and of an impulsive sound source, respectively, were recorded
in each scenario. Five recordings were done within the same
setup but placing the desired sound source and the active back-
ground noise generators at different positions. The mean sig-
nal to noise ratio was 31.35 dB for S1, 23.70 dB for S2, and
9.65 dB for S3.
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Furthermore it was necessary to define the assignment of
each localization to the real active sound source position. Be-
cause of the small concentrated array used, according to the
robot’s geometry, it was not possible to determine the distance
to the sound source, and only the azimuth and elevation an-
gles were taken into account. The localization was deemed
correct, if the Euclidean distance between the obtained and
the real angle was below 10 degrees.

6. RESULTS

In this section the results of our experiments are presented
and discussed. Table 1 shows the averaged results over all
measurements for both sound source types, speech (a) and the
impulsive sound source (b), using the SRP-PHATmethod and
the presented backgroundnoise suppression approach SP-BNS
(SRP-PHAT plus BNS). The absolute percentage of the cor-
rect localization rate is given for all combinations of active
sound sources (noise and desired) in the corresponding sce-
nario (S). In order to clarify the performance of the SP-BNS
method, normalized values considering only the correct local-
ization of active sound sources are presented in brackets.

S Method Fan Grinder Speaker Wrong

S1
SRP-PHAT off off 95.0 5.0

(100.0) (–)

SP-BNS off off 93.2 6.8
(100.0) (–)

S2
SRP-PHAT 19.1 off 73.0 7.9

(20.7) (79.3) (–)

SP-BNS 0.0 off 95.4 4.6
(0.0) (100.0) (–)

S3
SRP-PHAT 0.0 83.7 15.9 0.4

(0.0) (84.0) (16.0) (–)

SP-BNS 0.0 1.2 88.3 10.5
(0.0) (1.4) (98.6) (–)

(a) Speech

S Method Fan Grinder Toaster Wrong

S1
SRP-PHAT off off 39.5 60.5

(100.0) (–)

SP-BNS off off 38.7 61.3
(100.0) (–)

S2
SRP-PHAT 23.3 off 25.1 51.6

(48.1) (51.9) (–)

SP-BNS 0.0 off 46.6 53.4
(0.0) (100.0) (–)

S3
SRP-PHAT 0.2 40.0 30.2 29.6

(0.2) (56.8) (43.0) (–)

SP-BNS 0.0 0.0 35.8 64.2
(0.0) (0.0) (100.0) (–)

(b) Impulsive sound source

Table 1. Percentage of averaged measurement results for
speech (a) and an impulsive sound source (b).

In case of speech, the correct localization rate was about
95% for bothmethods in the scenario without any background
noise (S1). As expected, the localization rate for the desired

source decreases dramatically for the scenarios with active
background noise (S2 and S3) when using the SRP-PHAT
method without BNS. However, nearly 100% suppression of
the background noise was achieved when SP-BNS method
was used. This leads to an improvement of the correct local-
ization rate from 16% to 88% in case of S3. For the impulsive
sound sources like a toaster, SRP-PHAT does not reach the
high accuracy that is obtained with speech. This is the rea-
son why the mislocalization rate amounts about 60% already
in the scenario without any background noise (S1). Since the
purpose of this paper was not the improvement of the acoustic
localization using SRP-PHAT, the normalized values, given
in brackets, should be considered in order to evaluate our ap-
proach (SP-BNS) and to avoid the influence of the mislocal-
ization on the results. Then it can be seen that the combina-
tion of SRP-PHAT and BNS obtains an improvement of the
correct localization rate from 43% to 100% for S3, e.g.. In
scenarios S2 and S3, background noise is totally suppressed.

7. CONCLUSION

An adaptive energy detector which is able to adapt to a given
stationary background noise and distinguishes between the
background noise and a real acoustic event was presented.
A combination of this detector with the common SRP-PHAT
technique for the acoustic source localization was investigated
and an improvement up to 72% has been achievedwith speech
data.
Further investigationswill consider othermicrophone con-

stellations and various parameter settings in order to improve
the reliability of the localization of impulsive sound sources
using SRP-PHAT. To reduce the mislocalization rate, a track-
ing algorithm could be used, for example a Kalman filter [6].
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