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ABSTRACT

In this paper, we consider the problem of distributed detection

with binary sensors over a noisy multiaccess channel. Under

the assumption of conditionally independent sensor observa-

tions, we investigate the optimal decision regions at the fusion

centre. For a special case, it is shown that the optimal fusion

rule can be reduced to a simple threshold test on the signal

received by the fusion centre. We will demonstrate that the

traditional amplitude-scaling approach to satisfy the power

constraint is suboptimal. With a given power budget, a so-

lution featuring in the joint optimization of the local mapping

rule and the fusion rule is proposed and is shown to lead to a

gain in performance.

Index Terms— Distributed detection, multisensor sys-

tems, maximum likelihood detection, multiaccess communi-

cation, energy conservation

1. INTRODUCTION

For a binary hypothesis testing problem, distributed solutions

utilizing intelligent sensors with each of them making a local

decision have attracted considerable attention. Traditionally,

the design of such schemes is under the assumption of paral-

lel access channels where each sensor is allocated a dedicated

channel to communicate with the fusion centre. In contrast to

the parallel setup, several papers (e.g. [1–3]) have considered

distributed detection over a multiaccess channel. With a large

number of sensors, multiaccess channels will provide higher

bandwidth efficiency and better performance. Recently, [4]

has applied this idea to the fusion of local sensor decisions.

However, one issue that has not been addressed in those pa-

pers is how to optimize the system under the given power con-

straint.

In this paper, the fusion of local binary decisions, which

are communicated to the fusion centre over a multiaccess chan-

nel, will be studied. Different from [1–3] which focus on sys-

tems with a large number of sensors, we would like to con-

sider a more realistic problem where the system is composed
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of a small to moderate number of sensors. We will study the

optimal decision regions at the fusion centre. In an energy

limited system, the prevailing approach to satisfy the power

constraint is to scale the amplitude of the signal to be trans-

mitted. However, we will show that this design is subopti-

mal. For a fixed access scheme, we propose to jointly opti-

mize the mapping rule, which maps the local decision into a

specified waveform to be transmitted, at local sensors and the

fusion rule at the fusion centre such that the best performance

is achieved under the given power constraint.

The rest of the paper is organized as follows. The formu-

lation of the problem is presented in the next section. The

study of the optimal decision regions can be found in Section

3. In Section 4, a special case is discussed. And the opti-

mal design strategy is proposed in Section 5. We conclude in

Section 6.

2. PROBLEM FORMULATION

Consider the testing of two hypotheses H0 and H1 using N
distributed binary sensors. The prior probabilities for both

hypotheses (denoted by P0 and P1 respectively) are assumed

known. Let vi be the observation obtained by the ith sensor.

We do not assume any specific distribution for observations

but do assume the observations are conditionally independent

given H0 or H1. Based on its observation, the ith sensor

makes a local decision ui ( ui = j ∈ {0, 1} indicates that

the sensor is in favour of Hj) and will communicate it to the

fusion centre by transmitting a waveform. Such a mapping

from local decision ui to a particular waveform Mi(ui) is de-

termined by the following mapping rule Mi(·)

Mi(ui) =

{√
αi(1 − li) when ui = 1√
αi(−li) when ui = 0

,

where αi is a scaling factor and li is the bias. Here we make

the same assumption as in [1] and [2] that all the sensors

are fully synchronized and are allowed to communicate with

the fusion centre simultaneously over a multiaccess channel.

Thus, the signal w received by the fusion centre will be a
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Fig. 1. System diagram

noisy version of the superposition of all Mi(ui), which can

be expressed as

w =

N∑
i=1

Mi(ui) + n,

where n is the zero-mean additive Gaussian channel noise

with variance σ2. This is illustrated in Fig. 1. Upon receiving

w, the fusion centre will make a final decision u according to

a fusion rule Γ. To conserve energy, each sensor is subject to

a power constraint

E[Mi(ui)
2] ≤ C, i = 1, · · · , N, (1)

where C is the power budget and E[·] denotes the expecta-

tion operation. Our objective is to minimize the system error

probability Pe = Pr{u = 1|H0} × P0 + Pr{u = 0|H1} × P1

under the power constraint (1).

3. OPTIMAL DECISION REGIONS

In this section we study the optimal decision regions at the

fusion centre. The optimal fusion rule can be written as

g(w) = f(w|H1)P1 − f(w|H0)P0

H1

≷

H0

0, (2)

which means that the fusion centre will decide H0 if g(w)
is smaller than 0 and decide H1 otherwise. We use u =
(u1, u2, · · · , uN) to denote the local decision vector. Since

each ui can take value from {0, 1}, there are altogether 2N

possible values for u, which implies that in general the con-

ditional probability density function under either hypothesis

will be a mixture of 2N Gaussian distributions. Consider a

simple example where N = 2. Under the assumption of

conditionally independent sensor observations, each sensor

could be uniquely characterized by its false alarm probabil-

ity Pfi = Pr{ui = 1|H0} and its detection probability Pdi =

Pr{ui = 1|H1}. Thus, f(w|H0) in (2) can be written as

f(w|H0) =
(1− Pf1)(1 − Pf2)√

2πσ2
e−

[w−√α1(−l1)−√α2(−l2)]2

2σ2

+
(1 − Pf1)Pf2√

2πσ2
e−

[w−√α1(−l1)−√α2(1−l2)]2

2σ2

+
Pf1(1− Pf2)√

2πσ2
e−

[w−√α1(1−l1)−√α2(−l2)]2

2σ2

+
Pf1Pf2√

2πσ2
e−

[w−√α1(1−l1)−√α2(1−l2)]2

2σ2 , (3)

which is a Gaussian mixture with 22 components. By replac-

ing Pfi with Pdi, we will obtain the expression for f(w|H1).
As we can observe, the number of components in the Gaus-

sian mixture grows exponentially with the number of sensors.

To perform such a test (2) will result in heavy computational

loads and complex implementations when there are many sen-

sors participating in the observation. In the following, we pro-

vide a numerical approach to alleviate the problem. Define Ω0

to be the set in the domain of w such that g(w) is smaller than

0 and Ω1 to be the complement set of Ω0. Ω0 and Ω1 are also

known as the decision regions for H0 and H1 respectively.

Then we have the following theorem.

Theorem 1 The boundaries of Ω0 and Ω1 can be obtained by

solving an equation which has the following form

βMxbM + βM−1x
bM−1 + · · ·+ β1x

b1 + β0 = 0, (4)

where β0, β1, · · · , βM are real numbers, b1, b2, · · · , bM are

positive real numbers and x can take only positive real values.

The proof is omitted due to space limitations.

4. A SPECIAL CASE

In this section we consider a special case, where Pfi = Pf ,

Pdi = Pd, αi = α and li = l for all i (one possible sce-

nario for this case will be the situation when we have ho-

mogeneous sensors which adopt the same local decision and

mapping rule). In this case, the conditional probability den-

sity function of w under H0 is given by

f(w|H0) =

N∑
i=0

(
N
i

)
(1− Pf )N−iP i

f√
2πσ2

e−
[w−(i

√
α−N

√
αl)]2

2σ2 .

Here the number of components in the Gaussian mixture is

reduced to N + 1. Again, f(w|H1) can be obtained by re-

placing Pf with Pd. The boundaries of Ω0 and Ω1 can be

found by solving g(w) = 0. After algebraic simplification,

g(w) = 0 becomes

N∑
i=0

{[
(1− Pf )N−iP i

fP0 − (1 − Pd)
N−iP i

dP1

]

×
(

N
i

)
e−

(i
√

α)2

2σ2 xi

}
= 0, (5)
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where

x = e
√

α(w+N
√

αl)

σ2 . (6)

Notice that (5) has the form of (4).

Before exploring the optimal fusion rule for this special

case, we provide one lemma and one theorem.

Lemma 1 Let A0 and A1 be two positive real numbers, K be

a positive integer, 0 < p < 1 and 0 < q < 1. The following

sequence

Sk = A0(1− p)K−kpk −A1(1 − q)K−kqk

with k = 0, 1, · · · , K will change its sign at most once.

The proof is omitted due to space limitations.

Theorem 2 If there is one sign change in the coefficients of

polynomial p(x), then p(x) has exactly one positive root.

Proof Since there is one sign change, the sign of p(x) when

x > 0 is sufficiently small and the sign of p(x) when x > 0 is

sufficiently large will be different. By the continuity of p(x),
we know that there will be at least one positive root for p(x).
It is also shown in [5] that p(x) will have at most one positive

root when there is one sign change in the coefficients of p(x).
And the result follows.

Based on Lemma 1 and Theorem 2, we have

Theorem 3 The optimal fusion rule will be a threshold test

on w.

Proof The coefficients of xi on the left-hand side of (5) will

change sign at most once according to Lemma 1. If the sign

doesn’t change, the fusion centre will either always decide

H0 or always decide H1. So the threshold of the test will be

either∞ or−∞. If the sign of the coefficients changes once,

(5) will have one positive root by Theorem 2. And the left-

hand side of (5) will change sign at this unique root. Since

x is a strictly increasing function of w as shown by (6), g(w)
will also have one root and the sign of g(w) will change at

this root. Thus (2) can be reduced to a threshold test on w.

In the following, we denote the threshold for w as T . And

Theorem 3 suggests that T will be the boundary of Ω0 and

Ω1.

5. OPTIMAL DESIGN STRATEGIES

As we have mentioned before, our objective is to minimize

the error probability under the power constraint

min Pe

s.t. E[Mi(ui)
2] ≤ C, i = 1, · · · , N.

(7)

For any fixed Pfi and Pdi and the given multiaccess channel,

Pe only depends on the local mapping rule and the fusion rule.

Thus the joint optimization of the local mapping rule and the

fusion rule will provide the minimum error probability.

Continuing the discussion of the special case, we provide

the optimal system design in this section. Use M(·) to de-

note the common local mapping rule. Due to the symmetry

of the system, the power constraints in (7) will be satisfied if

and only if the power constraint for any one of the sensors is

satisfied. So, (1) can be simplified as E[M(u1)
2] ≤ C.

When (5) has a unique positive root xr (i.e. the sign of

the coefficients of xi in (5) changes once), the threshold T
can then be derived from (6) and is given by

T =
σ2lnxr√

α
−N

√
αl. (8)

In the case where Pd > Pf , we have PN
f P0 − PN

d P1 < 0.

Then for all sufficiently large x, the sign of the polynomial on

the left-hand side of (5) will be negative. Therefore, g(w) > 0
for all sufficiently large w and the optimal fusion rule can be

written as

w
H1

≷

H0

T. (9)

For such a test (9), the error probability can be expressed as

Pe = PF P0 + (1− PD)P1

=

N∑
i=0

{[
(1− Pf )N−iP i

fP0 − (1− Pd)
N−iP i

dP1

]

×
(

N
i

)
Q

(
T − (i

√
α−N

√
αl)

σ

)}
+ P1, (10)

where PF and PD denote, respectively, the false alarm prob-

ability and the detection probability of the fusion centre and

Q(·) is the complementary cumulative distribution function

of standard Gaussian. We will now establish the monotonic

property of Pe.

Theorem 4 Let η =
√

α/σ, Pe is a monotonically decreas-

ing function of η.

Proof We prove this by showing that the first derivative of Pe

with respect to η is negative. Since the sign of the coefficients

of xi in (5) changes once, there must be a λ such that the

coefficients of xi (i > λ) are all negative and the coefficients

of xi (i ≤ λ) are all non-negative. From (10), we have

dPe

dη
=

N∑
i=0

{[
(1− Pf )N−iP i

fP0 − (1− Pd)
N−iP i

dP1

]

×
(

N
i

) −e
−

“
lnxr√

2η
− iη√

2

”2

√
π

d
(

lnxr√
2η
− iη√

2

)
dη

}
.

By writing

d
(

lnxr√
2η
− iη√

2

)
dη

=
d
(

lnxr√
2η

)
dη

− λ√
2

+
λ− i√

2
,
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and using the fact that xr is the root of (5), we will finally

have

dPe

dη
=

N∑
i=0

{[
(1− Pf )N−iP i

fP0 − (1− Pd)
N−iP i

dP1

]

×
(

N
i

) −1√
π

e
−

“
lnxr√

2η
− iη√

2

”2 λ− i√
2

}
.

We have [(1−Pf )N−iP i
fP0− (1−Pd)

N−iP i
dP1](λ− i) > 0

when i > λ and [(1−Pf )N−iP i
fP0−(1−Pd)

N−iP i
dP1](λ−

i) ≥ 0 when i ≤ λ. As a result, dPe/dη < 0.

Following from Theorem 4, problem (7) is now equivalent

to

max

√
α

σ

s.t. E[M(u1)
2] ≤ C.

(11)

The constraint in (11) could be expanded as

E[M(u1)
2] = α{P̂E[(1− l)2] + (1− P̂ )E[(−l)2]}

= α[(1 − 2l)P̂ + l2]

≤ C,

where P̂ = PfP0 + PdP1. The maximum
√

α/σ could be

achieved by setting l = P̂ and the optimal local mapping rule

M(·) will be given by

M(ui) =

⎧⎨
⎩

√
C

P̂−P̂ 2
(1− P̂ ) when ui = 1√

C

P̂−P̂ 2
(−P̂ ) when ui = 0

.

And the threshold T for the corresponding optimal fusion rule

can be obtained by substituting α = C/(P̂ − P̂ 2) and l = P̂
into (8). The same result can be proved for the case where

Pd < Pf . Notice that the optimal bias l depends on Pf , Pd,

P0 and P1 and generally will not be equal to 0 or 1
2 as has

been assumed in many other works.

By jointly optimizing the local mapping rule and the fu-

sion rule, the performance will be improved. In Fig. 2, we

compare the optimal scheme to two non-optimal schemes (with

l set to be 0 and 1
2 ) for the case where N = 5, Pd = 0.9,

Pf = 0.1 and C
σ2 = 1. As can be observed, for local sen-

sors with high Pd and low Pf , the performance gap between

the optimal scheme and the scheme with l = 0 will be neg-

ligible only when P1 is close to 0. And the performance gap

between the optimal scheme and the scheme with l = 1
2 will

be negligible only when P1 is close to 0.5.

6. CONCLUSIONS

For distributed detection over a multiaccess channel, we in-

vestigate the design of the fusion rule at the fusion centre

0 0.1 0.2 0.3 0.4 0.5

10
−2

P
1

P
e

scheme with bias l = 0
scheme with bias l = 1/2
optimal scheme

Fig. 2. Performance comparison

and the local mapping rule for binary sensors. A numerical

method is proposed to find the decision regions for both hy-

potheses. In a special case, the optimal fusion rule is proved

to be a simple threshold test on the received signal. For an

energy limited detection system with an unreliable communi-

cation channel, we reveal the importance of the local mapping

rule design. As demonstrated by simulations, a gain in per-

formance is achieved by jointly optimizing the local mapping

rule and the fusion rule.
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