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ABSTRACT

We study time delay estimation (TDE) on parallel channels with flat
fading. Several models for the channel gains are considered, and for
each case we present the the maximum likelihood estimator (MLE),
the Cramér-Rao bound (CRB), and the Ziv-Zakai bound (ZZB). The
bounds facilitate an analysis of the effects of fading and diversity on
TDE accuracy over parallel channels. Computer simulations of the
mean-squared error of the MLEs confirm the validity of the bounds.

Index Terms— Delay estimation, fading channels, maximum
likelihood estimation, error analysis, diversity methods.

1. INTRODUCTION

Time delay estimation (TDE) has been studied extensively for sev-
eral decades, e.g., see [1], with most of the attention focused on sig-
nals received over a single channel. In this paper, we study the prob-
lem of estimating a time delay (TD) parameter based on processing
signals received on multiple, parallel channels. An example of TDE
on parallel channels is a waveform containing multiple frequency
subbands that is received through a frequency-selective channel. The
channel may be known or unknown, as well as deterministic or ran-
domly fading. The subbands may be viewed as parallel channels,
and the objective is to jointly process the signals on each channel to
estimate the (common) TD parameter. If the parallel channels in-
clude random fading, then interesting questions include an analysis
of diversity gain with respect to TDE accuracy, and tradeoffs be-
tween signal energy per channel and the number of channels. TDE
on parallel channels also arises with a frequency-hopping waveform
in which multiple hops are processed to estimate the TD [2].

In this paper, we formulate a model for TDE on parallel chan-
nels in Section 2. Each channel is modeled as frequency nonselective
(flat), so it is characterized by a complex gain. We consider several
models for the channel gain, including deterministic (known and un-
known) and random (Rayleigh fading). In Section 3, each channel
model is analyzed, and we present the maximum-likelihood estima-
tor (MLE), Cramér-Rao bound (CRB), and Ziv-Zakai bound (ZZB)
for the TD parameter. Section 4 contains Monte Carlo simulation re-
sults that compare the mean-squared error (MSE) of the MLEs to the
bounds. We note that bounds for TDE on a convolutive (frequency
selective) channel have been developed recently in [3].

2. SIGNAL MODEL
We model the complex-valued signals received on N channels as

ri(t) =visi(t—71) + ni(t), i=1,...,N. (1)
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The s;(t) are known waveforms, n;(t) are complex, AWGN pro-
cesses with zero mean and two-sided PSD N, and each ~; is a com-
plex scalar representing the gain of the channel. We consider five
models for the vector of complex channel gains, ~.

(1) ~ is known and deterministic.
(2) ~ is unknown and deterministic.

(3) Each~y; is a complex, circular, Gaussian random variable with
zero mean and variance E {|v;|°} = o2, independent for
i =1,..., N. This corresponds to Rayleigh fading, denoted
by v ~ CN (0, oI ) . The results in this paper are identical
whether 2 is modeled as a known or unknown parameter.

(1A) Case (1) averaged over the Rayleigh fading distribution, so
v ~ CN (07 oI ) This corresponds to a fading channel and
a receiver that has perfect knowledge of -, so the TDE is esti-
mated with a coherent combination of the diversity channels.

(2A) Case (2) averaged over v ~ CN (0, o1 ) This corresponds
to (imperfect) estimation of < on each realization, and then
averaging over the Rayleigh fading distribution.

Case 3 is different from case 2A in that - is not estimated in case 3
since it is modeled as a random vector.

The probability density function (pdf) for the model (1) is
required for two cases: the conditional pdf, p. (R |v;T), where
7 is a fixed vector, and the unconditional pdf, p, (R|7) =
Ey {pc (R|~;7)}, that is averaged over v ~ CN (0,02 I). The
signal autocorrelation functions are defined as

pi(f):/si(t—f)*si(t)dt, izl,...,N, (2)

where * denotes complex conjugate and the limits on all integrals are
(=00, 00). The coherent and noncoherent matched filters applied to
the signal received on channel ¢ are defined as follows,

YO =Re [rist- O nwd  0)
Vo) —| [ste - nco an. @
Let r; be a vector representation of r; (¢), and define R = [r1,...,7N].

Then the conditional pdf for R has the following form, where factors
independent of ~y, 7 are suppressed:

pe(R|7:7) o [I, exp { & 2V (7) = i ()]} 5)
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The unconditional pdfis obtained by observing that v ~ CN (0, oI )
implies that ; ~ CN (0, X;), where the covariance matrix is

3 = Uf Si(T)Si(T)H + N, T 6)
—1 2Si(’i')sl'(’T)Ij{
I = ol v

where s;(7) is the vector representation of s;(t — 7) and 7 is the
conjugate-transpose operation. Then, ignoring terms and factors that
are independent of 7, the unconditional pdf is proportional to

pu(R|7) o [TV, eXp{N(Mi—;mm))YNONCOH( )2} ®)

We make the following three assumptions.

A1 The signal autocorrelation functions in (2) are the same on each
channel, p;(&) = p&),i=1,...,

0= [l

A2 The signals have the property [ s;(t)
Si (t) = % Si (t)

A3 The mean-squared signal bandwidth is the same on each channel
and is denoted by B, Hz, with definition

. p(| /f2 SO 4

p(0)

where S;(f) is the Fourier transform of s;(¢).

N, so the signal energy is
250), i=1,...,N. (9

$i(t)*dt = 0, where

(10)

Then the log-likelihood functions corresponding to (5) and (8) are

Lo(R]7im) = 37 S5 YOG — iPp@)] ()

2

Os N NONCOH /__\2
Na Wi+ ozpop =t Vo0

L,(R|7)= (12)

3. TDE ESTIMATORS AND BOUNDS

In this section, the MLEs, CRBs, and ZZBs are presented for the
five channel model cases. Before presenting the details, a summary
is provided in Table 1. In cases I and 1A, the MLE is a sum of co-
herent matched filters (MFs) because -y is known. In cases 2, 3, and
2A, the MLE is a sum of noncoherent matched filters. Although the
MLEs are identical for several cases in Table 1, the performance of
the MLE varies from case to case, except that the performance is the
same in cases 2A and 3. The CRBs for cases 1, 2, and 3 are gener-
ally distinct. However, for the known signal waveforms considered
here with assumption A2, the 7 and ~ parameters are decoupled in
the Fisher Information Matrix (FIM), so CRBz = CRB;. The CRB
is not defined for cases 1A and 2A, but the so-called modified CRB
(MCRB) [4, 5] and asymptotic CRB (ACRB) [6] definitions are sim-
ilar to these cases. The ZZB is unique in four of the five channel
model cases, and the ZZB is tractable in the four distinct cases.

3.1. Maximum likelihood estimators
The MLEs are sums of coherent and noncoherent matched filters,
A GED I (13)
ZNONCOH(é-) _ EZ\JZI (14)

V()
}/;:NONCOH (5) 2 .
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For case 1, the MLE is the value of 7 that maximizes the LL in (11)
when - is known, so

71 = arg max Z“"(¢).

(15)

For case 2, «v is an unknown, deterministic parameter, so the MLE
requires the joint maximization of the LL in (11) with respect to 7
and ~. For a given TDE estimate 7, the MLE of each +; is

~ 1

’yi:—/sit—?*ritdt, iZl,...,N. (16)
@ | A
The estimates 7; in (16) are substituted for ~ in (11), yielding

o = arg max Z" VM (¢). 17)

For case 3, ¥ ~ CN (0,02 I) so the MLE for 7 is the value that
maximizes the unconditional LL in (12), which is identical to (17):

(18)

For cases 1A and 2A, the MLEs are given by 77 in (15) and 7» in
(17), respectively. The MLE performance is different in cases 1A
and 2A (compared with cases 1 and 2 in which -y is fixed) due to
averaging over realizations of values for v ~ CN (07 oI ) In Ta-
ble 1, “Coh MF” refers to (13) and “NonCoh MF” refers to (14).

#3 = arg max Z OO &).

3.2. Cramér-Rao bounds

Next we consider the CRBs. In general, let us denote the determin-
istic parameters by the vector ® and the LL function by L(R | ©).
For cases 1, 2, and 3, r; is a complex, Gaussian random vector,
r; ~ CN(ui,C;), independent for i« = 1,..., N, so the Fisher
information matrix (FIM) elements are given by [7]

(@) = £, {race [C;1 58 €1 5]

8/»"1 1 3#1
+2-Re [Mm Cl o (19)
For cases 1 and 2, pt; = v;8:(7) and C; = N, I, with ©® = [r] for

case 1 and ® = [Re (v),Im (), 7] for case 2. For case 3, u; = 0
and C; = X; in (6), with ©® = [7].

The CRB expressions are unified if we define the average SNR
per channel in (20) for the deterministic cases 1 and 2, and the mean
SNR per channel for cases 1A, 2A, and 3 in (21):

SNR (7) = (p(0)/N) TN, (20)
= PO E{|%*}  p(0)o?
SNR = ) A {SNRu (7)}. (21)

It can be shown that the FIM for case 2 is diagonal, so the CRB
for 7 is identical in cases 1 and 2:
1

=CRB; = 3 :
2 (27 Bs)? N SNRe (7)

CRB: (T |7) (22)

The notation on the left side of (22) emphasizes that the CRB de-
pends on the channel gains, vv. The FIM for case 3 is obtained from
(19) with p; = 0, C; = X; in (6), and ® = [7], yielding:

+ (SNR)

CRB; (7) = —— >
3@ =3 (27 B,)> N SNR

(23)



Channel Model
1 2 3 1A 2A
MLE || Coh MF NonCoh MF NonCoh MF | Coh MF NonCoh MF
CRB CRB; CRB; = CRB; CRB3 MCRB | ACRB = MCRB
77ZB 778, 77Bs 77B3 Z7B1 4 77Bss = Z7ZB3

Table 1. Relations between the MLEs, CRBs, and ZZBs for each channel model.

The CRB in (23) is the “true”” CRB for the Rayleigh fading chan-
nel model. The derivation of (23) is tractable, but it requires sig-
nificantly more computation than the CRB in (22) in which ~ is a
deterministic parameter. A number of bounds that are looser than
the CRB have been studied for models with random nuisance pa-
rameters, such as the modified CRB (MCRB), hybrid CRB (HCRB),
asymptotic CRB (ACRB), and others [4, 5, 6]. These looser bounds
begin with a FIM in which ~ is modeled as a deterministic param-
eter, and then an averaging operation is performed over -y on some
function of the FIM. The CRB is not defined for channel models 1A
and 2A in Table 1, but the MCRB and ACRB are closely related to
cases 1A and 2A, respectively, and have the form

~ . 1
CRB14 (F) " MCRB(7) & —
2 (27 B,)? NSNR

)8 e
2 (27 B,)? NSNR'
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CRBs.4 (7) ~ ACRB (7 (25)

Note from (23), (24), (25) that CRB3 (7) > MCRB (7) = ACRB (7)
and that the three bounds coincide when SNR > 1.

The CRBs in (22), (24), (25) are identical if we set SNRyet () =
SNR in the deterministic and random channel models, and (23) has
the same form when SNR >> 1. Thus the CRBs depend on the fotal
signal power over the N channels, and the CRB analysis does not
reveal any diversity advantage if more channels are used with pro-
portionately less signal power per channel. We will show in the fol-
lowing subsection that the Ziv-Zakai bounds are quite sensitive to the
channel model, and greater diversity (larger V) provides significant
improvement in the threshold SNR at which the MLE performance
is equal to the CRB.

3.3. Ziv-Zakai bounds

The CRB is a tight bound on the MLE performance only when the
errors are small. As the errors get larger, a threshold behavior arises
from ambiguities that are particular to the signal and its correlation.
Several approaches have been used to develop bounds tighter than
the CRB. Ziv and Zakai developed an approach based on hypothesis
testing [8], and improvements were subsequently derived [9, 10].
In this section, we outline the approach used to find the improved
Z7B for the model in (1) and present four distinct ZZB results, as
summarized in Table 1. The detailed derivations are omitted due to
space limitations.
The ZZB is derived from the following hypothesis test:

Hy: ri(t) =~visi(t—a) + ni(t), i=1,...,N (26)
Hy: ri(t)=vsi(t—(a+0)) + ni(t), i=1,...,N. (27)

The hypotheses are equally likely, 7 is modeled as a uniform ran-
dom variable on the interval [—D /2, D /2], which represents a priori
knowledge about the range of possible values for the TD parameter.
Therefore in (26), (27), 0 > 0 and a, (a + 0) € [-D/2,D/2]. Let

P.(a, a+0) denote the minimum probability of error in deciding be-
tween Hy and H; for particular values of a, a + 6. The P.(a,a+0)
is derived from a likelihood ratio test (LRT), so it depends on the
model for the channel gain vector, ~v. The conditional log-likelihood
(LL) in (11) is used to find P. for channel models 1 and 1A, with ~
fixed in case 1 and averaged over -y in case 1A. For case 2, a general-
ized LRT formed with ML estimates of the channel gain parameters
in (16) substituted into (11) reduces to a LRT based on (12), with ~
fixed. Case 2A includes subsequent averaging over <. The P. for
case 3 is based on the unconditional LL in (12), and is found to be
identical to case 2A. The ZZB for each case is obtained by using the
corresponding P, in the following expression,

S Y
278(7) > /O 0 V(D — 0)P.(0)] do, 28)

where V[] is a nonincreasing function that fills the valleys of the
bracketed function, and P.(a,a + ) = P.() is independent of a.

The P. expressions for each case are obtained with the aid of
expressions from [11, pp. 882—-886] and [12, p. 319 and pp. 619—
624]. First, we define

Q) = V% / " exp(—u?/2) du (29)
1\ 1/ anv 1 T4+z\°
rev=(50) () (555)
9 —1/2
weo) = {1 TR (1 Re [p(en/p(on} G0)
1 —1/2
oz s 2[1+(SNR) ] o
- (SNR/2) - (1 |p(6)/p(0)?)
N
S@ BN =5+ g 3 (N7 ) e - g0

i=1

Qi(a, 8) = generalized "™ order Marcum Q-function [12]

1/2

b(0,~v,N) = [g - SNRyet (7) - (1 /1 |p(9)/p(0)|2>}

Then the P, expressions for cases 1, 2, 1A, and 2A =3 are

P.i(0|7)=Q <\/N - SNRyet () - <1 — Re[p(@)])) 32)

p(0)
P.>(0) = S (a(8,v,N),b(0,v,N),N) (33)
P14 (0) = R(u(9),N) (34)
P.3(0) = Pe2a(8) =R(v(9),N). (35)
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SQUARE ROOT OF ZZB, CRB, & SIMULATED MSE: N = 1 CHANNEL
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SQUARE ROOT OF ZZB, CRB, & SIMULATED MSE: N = 5 CHANNELS
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Fig. 1. Comparison of CRB, ZZB, and MSE for N = 1 and N = 5 channels.

Note that P. 14 and P.3 = P. 24 have similar functional
forms, so from (30) and (31) we can define an “SNR penalty”,

1 —Re[p(0)] /p(0)
1—1p(6)/p(0)

Case 1A assumes that the receiver has perfect knowledge of the
channel gains, so the factor on the right side of (36) may be viewed
as the additional SNR that is required in cases 2A and 3 to achieve
the same P. for a given 6 as case 1A. This SNR penalty does not
translate directly to the ZZB due to the integration over € in (28).

It is possible to obtain simplified expressions for (32)-(35) at
high SNR, leading to an analytical characterization of the SNR-
threshold behavior of TDE on parallel channels. The details of this
analysis will be elaborated elsewhere, but an interesting conclusion
is as follows for the cases with random fading (1A and 2A=3). If the
total signal power is held fixed as N is increased, so that N - SNR
remains fixed as IV increases, then as long as the SNR per channel is
> 1, P.1a and P. 3 = P. 24 decrease as N increases. Therefore
increased diversity reduces the SNR threshold for TDE on fading
channels, while the increased diversity has no effect on the CRBs in
(22)-(25) if N - SNR is fixed.

SNR; = SNRy4 = SNRy 4 - 2- (36)

4. NUMERICAL EXAMPLE AND SIMULATION

We present a numerical evaluation of the bounds and compare with
the simulated mean-squared error (MSE) of the MLEs. The signal
on each channel is a square-root, raised-cosine pulse with 0 excess
bandwidth, period 107> sec, and unit energy. The MSEs are com-
puted based on a minimum of 10,000 Monte Carlo runs at each SNR,
with 22,000 runs for SNRs in the threshold region.

Figure 1 shows the bounds and simulated root-MSE for N = 1
and N = 5 channels for cases 1 (blue), 2 (green), 1A (red), and 3
(black). Note that for N = 1 channel (no diversity), the ZZBs with
fading (1A and 2A = 3) are significantly larger than the CRB, and
the CRB is not achievable an any SNR. For N = 5 channels, the
ZZBs converge to the CRBs when the SNR is exceeds a threshold.
For all cases, the SNR thresholds of the ZZB and MSE are similar.
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