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ABSTRACT
In this paper we present a novel framework for automatic extraction of
dispersion characteristics from acoustic array data. Traditionally high
resolution narrow-band array processing techniques such as Prony’s
polynomial method and forward backward matrix pencil method have
been applied to this problem. Fundamentally these techniques extract
the dispersion components frequency by frequency in the wavenumber-
frequency transform domain of the array data. The dispersion curves are
subsequently extracted by a supervised post processing and labelling
of the extracted wavenumber estimates, making such an approach
unsuitable for automated processing. Moreover, this frequency domain
processing fails to exploit useful time information. In this paper we
present a method that addresses both these issues. It consists in taking
the continuous wavelet transform (CWT) of the array data and then
applying a wide-band array processing technique based on a modified
Radon transform on the resulting coefficients to extract the dispersion
curve(s). The time information retained in the CWT domain is useful
not only for separating the components present but also for extracting
group slowness estimates. The latter help in the automated extraction
of smooth dispersion curves. In this paper we will introduce this new
method referred to as the Exponential Projected Radon Transform
(EPRT) in the CWT domain and limit ourselves to the analysis for the
case of one dispersive mode. We will apply the method to synthetic
and real data sets and compare the performance with existing methods.

Index Terms— Array Signal Processing, Signal Analysis, Parameter
Estimation, Wavelet Transforms, Acoustic Applications

I. INTRODUCTION
Acoustic investigations around the borehole in oilfield applications

require the extraction of dispersion information from the data that is
generated by firing an acoustic source in the borehole and collecting
waveform traces at an array of receivers on borehole sonic logging
tools, [1]. Dispersion refers to the characteristic variation of the
slowness (reciprocal of velocity) as well as attenuation of propagating
waves as a function of the frequency and carries useful information
about the rock formations around the borehole. Consequently the study
of dispersion and its extraction has been a subject of intensive research
posing theoretical as well as computational challenges in the geophysics
community. Initial papers in this direction dealt with narrowband
processing techniques that required significant post-processing efforts,
see [2], [3] and references therein.

Recently there has been interest in the application of time frequency
methods to this problem, see [4] and references therein. The approach
presented here is also based on time-frequency representations but
differs from the approach in [4] as discussed later. First we begin by
outlining the problem set-up in the next section.

II. PROBLEM SET-UP
The waves that are generated in the borehole are recorded at a linear

array of sonic receivers. The relation between the received waveforms
and the frequency-wavenumber (ω-k) response of the borehole to the
source excitation is captured via the following equation,

s(l, t) =

∫ ∞

0

∫ ∞

0
X(f)Q(k, f)ei2πfte−ikzldfdk (1)

for l = 1, 2, ..., L and where s(l, t) denotes the pressure at time t at
the l-th receiver located at a distance zl from the source; X(f) is the
source spectrum and Q(k, f) is the wavenumber-frequency response

of the borehole. It has been shown that the complex integral in the
wavenumber (k) domain can be approximated by the contribution due
to the residues of the poles of the system response, [2]. Specifically,

∫ ∞

0
Q(k, f)e−ikzldk ∼

N(f)∑
n=1

an(f)e−(i2πkn(f)+An(f))zl (2)

where kn(f) and An(f) are the wavenumber and the attenuation
as functions of frequency for the nth pole contribution (mode), an(f)
is the corresponding pole residue or amplitude factor and N(f) is the
number of significant modes. Then we have,

s(l, t) =

∫ ∞

0

N(f)∑
n=1

Xn(f)e−(i2πkn(f)+An(f))zlei2πftdf (3)

where Xn(f) = X(f)an(f). Given the array data, the problem then
is to estimate kn(f) and An(f). We note that the slowness dispersion
parameters, namely the phase slowness, sφ, and group slowness, sg ,

are functions of the wavenumber: sφ =
k(f)

f
, sg =

∂k(f)
∂f

.

Typically in acoustic logging applications the number of receivers,
L, is small, e.g. 10 receivers. Thus a simple 2-dimensional Fourier
transform of the data does not result in a high resolution extraction of
the dispersion parameters since the spatial sampling is very low leading
to severe aliasing. In this paper we present high resolution methods for
dispersion extraction for such scenarios.

For the sake of exposition, in this paper, we will focus on extraction
of kn(f) and An(f) when there is only one significant mode present.
However, the method and the analysis shown here can be easily
extended to multiple modes when they do not overlap in the time
frequency plane. The main focus is to offer a method in continuous
wavelet transform (CWT) domain for automated dispersion extraction
of the phase and group slowness and the attenuation. We next outline
this approach by establishing the formulation in the CWT domain.

III. DISPERSION EXTRACTION IN THE CWT DOMAIN
We begin with a brief review of the CWT; the reader is referred to

[5] for more details. The CWT S(a, b) of a function s(t) is the scalar
product of this signal by the dilated and translated wavelets from a
family, given by T bDa[g(t)] =

√
ag( t−b

a
), where g(t) is the analyzing

(mother) wavelet that is chosen to satisfy some admissibility condition
[5]. The CWT at scale a and time shift b is given by

S(a, b) =
1√
a

∫
s(t)g∗(

t− b

a
)dt (4)

=

∫ ∞

−∞
G∗(af)ei2πbf S(f)df (5)

where G(f) and S(f) are the Fourier transforms of g(t) and s(t),
the signal being analyzed, respectively.

Under the approximate model of equation (3) and restricting our-
selves to the single mode case, the CWT at scale a and time shift b of
the received waveforms is given by,

Sl(a, b) =

∫ ∞

−∞
G∗(af)X(f)ei2π[bf−zlk(f)]e−zlA(f)df (6)

where we drop the indexing on n. In terms of inter-sensor spacing
δlj = zl − zj between receiver l and j we can write,
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Sl(a, b) =

∫ ∞

−∞
G∗(af)Sj(f)ei2π[b−δljk(f)]e−δljA(f)df (7)

where Sj(f) is the Fourier transform of the waveform at receiver
j. To begin with we write the local linear Taylor series expansion of
k(f) and A(f) as

k(f) ≈ k(fa) + (f − fa)k′(fa) (8)

A(f) = A(fa) + o(|f − fa|) ≈ A(fa) (9)

where fa = ω0
2πa

is the frequency corresponding to the scale a and
related by the latter to the central frequency ω0 of the mother wavelet.
Under the above Taylor approximation we have,

Sl(a, b) = e−δljA(fa)e−i2πδlj [k(fa)−fak′(fa)]Sj(a, b− δljk′(fa))

= e−δljA(fa)e−iδljφaSj(a, b− δljsg(fa)) (10)

where φa
2π

.
= k(fa)− fak′(fa) = fa[sφ(fa)− sg(fa)] appears as a

phase factor multiplying the shifted CWT for sensor j.
Now note that from the above expression it follows that the phase

factor is a function of both the group and the phase slowness and the
modulus is related to the group slowness. This is intuitive as (a) the
group slowness is related to the energy propagation, i.e. the velocity of
propagation of the envelope and (b) the phase slowness is related to the
velocity of propagation of the points of constant phase on the wavefront.
Note that in the non-dispersive case the phase and the group slowness
are the same. The relationships shown in equation (10) motivate the
development of a modification of the Radon transform that is the basis
of our method and which we describe in the next section.

IV. EXPONENTIALLY PROJECTED RADON TRANSFORM
(EPRT)

To this end, let us fix a scale a and consider the array of CWT
coefficients, Sl(a, t) for each of the array waveforms at that scale where
we now treat the shift as a time index t. The EPRT consists of two
parts as applied to that array of CWT coefficients:

(a) Finding estimates φ̂ of the phase factor φa and α̂ of the
attenuation A(fa) using the array of coefficients collected
from a set of windows at a fixed moveout p.

(b) Using these estimates to apply a modified slant-stack (Radon
transform) operation at moveout p on the collected array of
CWT coefficients wherein we apply the projection operator
Pu = 1√

U†U
U† onto the vector U given by

U =

⎡
⎢⎢⎣

e−[α̂+iφ̂](z1−zl0 )

...

e−[α̂+iφ̂](zL−zl0 )

⎤
⎥⎥⎦

instead of the simple sum operation in the regular slant-stack
that corresponds to projecting on a vector of all 1’s. l0 is the
reference receiver for stacking the waveforms. The result of
this modified stacking operation is the output of the EPRT at
scale p and window location t on the reference sensor.

We explain the above two steps further below.

IV-A. Estimation of phase and attenuation factors at a given
moveout

Under the approximation in equation (10), we estimate the phase and
the attenuation factors from the CWT coefficient array at a particular
scale a and collected at a fixed moveout p as follows. Let us assume
that we have the correct moveout p = sg . Denoting δi = δil0 , we can
write from equation (10)

Ya =

⎛
⎜⎝

S1(a, t′ + δ1sg)
...

SL(a, t′ + δLsg)

⎞
⎟⎠ =

⎡
⎢⎢⎣

e−δ1(A(fa)+iφa)

...

e−δL(A(fa)+iφa)

⎤
⎥⎥⎦ Sl0 (a, t′)+E

where t′ is a set of time indices in a window encompassing the mode
of interest in the CWT domain at scale a and E is the error modeled as

incoherent additive noise. In terms of notation Ya is a L× |t′| matrix.
To this end define

Ya,1 = [Ya(1) Ya(2) · · · Ya(L− 1)]

Ya,2 = [Ya(2) Ya(2) · · · Ya(L)]

where Ya(i) is the i-th row of the matrix Ya. Now we compute the
quantities,

Rij = Ya,jY
†
a,j i, j = 1, 2

where (·)† denotes conjugate (Hermitian) transpose and we are
therefore computing the inner product Note that Rij = R∗ji, so only
one of them needs to be computed in practice. One can show that,(

R11 R12

R21 R22

)
= σ1V †V + σ2I2×2

where I2×2 is the identity matrix of size 2 and σ1 and σ2 are positive
constants. Now note that for a Uniform Linear Array (ULA) with inter-
sensor spacing of δ, V = [1 e−δ(α+iφ)]. We see that V is simply the
right eigenvector corresponding to the dominant eigenvalue. Thus we
have the estimates for φ and α as,

α̂ = −1

δ
log

[ √
(R11 −R22)2 + 4||R12||2 −R11 + R22

2||R12||

]
(11)

φ̂ = −∠(R12)

δ
(12)

where ∠(·) is the angle (phase) of the complex argument.
For non-uniform arrays this process can be applied to the sensor

array by selecting sensors that are at constant distance from each other
or by simply applying this process to sensors in a pairwise fashion
using the corresponding inter-sensor distance as δ for each pair and
then taking the average.

IV-B. Exponentially projected slant-stack operation
Using the estimates of the attenuation and the phase factor as

obtained in the previous step, we apply the projection operator PU

on the array data at scale a. For the sake of clarity of exposition, we
will now assume a ULA. However the corresponding expressions can
be developed for the general case as well and the method described
here is not restricted by this assumption. The projection operator in the
case of the ULA becomes,

PU =

⎛
⎜⎜⎜⎜⎝e−α̂δ(2l0+1−L) sinh(α̂δ)

sinh(Lα̂δ)︸ ︷︷ ︸
=1/K

⎞
⎟⎟⎟⎟⎠

1/2

U∗

Then the EPRT at scale a is the following transform,

Ra(t, p; α̂, φ̂)

=
1

K

∫ t+Tw

t

∣∣∣∣∣
L∑

l=1

e−(α̂−iφ̂)δ(l−l0)Sl(a, t + p(l − l0)δ)

∣∣∣∣∣
2

dt

where we include the moveout, p, and window location, t, as
primary arguments, and the estimated attenuation and phase as auxiliary
arguments, and choose the window length, Tw , based on the scale being
analyzed. The schematic of this operation is shown in figure 1. We
can interpret this EPRT output as the normalized coherent energy (in
the sense of conforming to the exponential propagation model) in the
window given by the location and moveout across the array. Along
the lines of [6] we can write a related quantity that we call the EPRT
semblance as follows,

ρa(t, p; α̂, φ̂)

=
1

K

∫ t+Tw
t

∣∣∣∑L
l=1 e−(α̂−iφ̂)δ(l−l0)Sl(a, t + p(l − l0)δ)

∣∣∣2 dt∫ t+Tw
t

∑L
l=1 |Sl(a, t + p(l − l0)δ)|2 dt
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Fig. 1. Schematic representation of the EPRT with the reference
receiver as the first receiver as applied to the CWT coefficients of
the waveforms at scale a.

where we normalize the coherent energy described above by the total
energy in the same window. This is therefore an indicator of fit to the
exponential model with the best fit given by a value of 1.

IV-C. Overview of semblance analysis
Following the analysis in [6], assume that the time window length

and location are chosen so as to enclose the coefficient waveform of
interest completely. Then using Parseval’s relation we can write,

ρa(p; α̂, φ̂) =
1

K

∫ ∣∣∣∑L
l=1 Sl(a, f)e−(α̂−i(φ̂+2πpf))δ(l−l0)

∣∣∣2 df∫ ∑L
l=1 |Sl(a, f)|2df

where Sl(a, f) is the Fourier transform of Sl(a, t) and ρa(p; α̂, φ̂) is
the value of the semblance for a time window location chosen so as to
encompass the signal appropriately. Then it follows from the linearity
of the wavelet transform that,

Sl(a, f) = X(a, f)e−(A(f)+i2πk(f))δ(l−l0)

where X(a, f) = X(f)G∗(af). Plugging this expression into the
expression for EPRT in the frequency domain we have,

ρa(p; α̂, φ̂) = (13)∫ ∣∣∣∑L
l=1X(a, f)e−(A(f)+i2πk(f))δ(l−l0)e−(α̂−i(φ̂+2πpf))δ(l−l0)

∣∣∣2df

K
∫ |X(a, f)|2 ∑L

l=1 |e−A(f)δ(l−l0)|2df

We conduct our analysis by considering additional terms in the
Taylor series expansions (8) and (9),

k(f) ≈ sφfa + sg(f − fa) +
s
′
g

2
(f − fa)2

A(f) ≈ A(fa) + A′(fa)(f − fa)

For reasons of space, we show only the main result here, namely
that the semblance of (13) is maximized by the following estimates

α̂ = A(fa) + A′(fa)fδ (14)

p̂ = sg(fa) + s
′
g

(
fδ +

Γ3
f

2Δ2
f

)
(15)

φ̂ = 2πδ

{
sφ(fa)fa − p̂fa +

s
′
g

2

(
Δ2

f − f2
δ −

Γ3
f fδ

Δ2
f

)}
(16)

which are given in terms of spectral moments defined by,

Δ2
f =

∫ |X̃(a, f)|2(f̃ − fδ)2df∫ |X̃(a, f)|2df
; Γ3

f =

∫ |X̃(a, f)|2(f̃ − fδ)3df∫ |X̃(a, f)|2df

where

fδ =

∫ |X̃(a, f)|2f̃df∫ |X̃(a, f)|2df
, f̃ = f − fa (17)

with X̃(a, f) =
√

Π(f)X(a, f) where Π(f) =∑L
l=1 |e−A(f)δ(l−l0)|2. The bias terms in equations (14-16) are small

when the source spectrum does not exhibit steep dropoff over the
spectral support of the wavelet at scale a.

Note that our method differs from the method in [4] in three
major respects. First instead of searching over all the parameters we
estimate the phase and attenuation and search only over group slowness.
Second our method employs semblance as a criterion to estimate the
parameters. In contrast to the energy based approach of [4], this makes
it feasible to extract weak modes. Finally we explicitly deal with and
estimate attenuation, which is an important parameter of interest in
oilfield applications.

V. THE ALGORITHM
First we generate the CWT of the waveforms using a suitably

chosen mother wavelet. We then select a reference sensor; this is
usually taken to be the last one to maximize the temporal separation
of interfering components. Then starting at the frequency (scale) that
has the maximum energy the algorithm consists of the following steps
for each frequency fi (corresponding to scale ai),

1. For each scale we use the time window length Tw based on
the effective spread of the wavelet at that scale (dilation). This
choice validates the analysis which assumes that the time window
encompasses the signal at the scale a.

2. Pick a set of moveouts p corresponding to the expected range of
group slowness.

3. For each of these moveouts shift and align the array of coefficient
data corresponding to the moveout.

4. For these aligned arrays compute the estimates α̂ and φ̂ as
described above.

5. Using these estimates construct a semblance map in the (t, p)
domain. Locate the maximum on this map and declare the
corresponding value of the moveout as the estimate p̂.

6. Using continuity and smoothness of the dispersion curves, we
speed up computation by limiting the search over the moveouts
p at frequency fi to be around a neighborhood of the moveout
(slowness) value obtained at fi−1.

The above process is repeated marching up in frequency, outputting
the desired estimates at each step, thereby generating an estimate of
the dispersion characteristic. The march up is terminated when the last
frequency of interest is reached or when the maximized semblance falls
below a threshold. The process is then repeated marching down from
the starting frequency with a similar terminating condition.

The algorithm is depicted schematically in figure 2.
Multimode extraction: Note that if the modes are separated in time

at scale a then the method and analysis easily extends to each of the
modes with semblance peaks at different t in the (t− p) plane.

V-A. Bias correction
When the source spectrum and the wavelet spectrum at a scale a are

not aligned then there is a bias in the estimated dispersion parameters,
given by equations (14-16). There are two ways to correct this bias:

1. Frequency correction: The bias in the estimation of both attenu-
ation and slowness contains a linear term that is exactly the term
in the first order Taylor series expansion evaluated at fa + fδ .
Assuming this dominates the other terms we can address the bias
by declaring the estimates at fa to be the estimates at fa + fδ .
This correction is readily obtained from the data and thus can be
easily applied in one step.

2. Slowness correction: Alternatively we can explicitly estimate the
bias terms that requires us to estimate the spectral moments from
the data. However, the correction terms also involve estimation of
the derivative of the group slowness. This requires a first pass
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Assign for each 

Output for
:

Fig. 2. The algorithm for dispersion extraction using EPRT.

to generate a (biased) group dispersion curve and then using
a smoothing operator to estimate the desired derivative. The
resulting correction is then applied to the estimated dispersion.
This process can be iterated if necessary to refine the estimates.

VI. PERFORMANCE EVALUATION

For our experiments we choose the Morlet wavelet [5], because it is
well matched with borehole acoustic data. We illustrate the performance
of the proposed method for synthetic data in figure 3 and for real
field data in figure 4. The former is generated using realistic model
dispersion curves and include added noise. The model curves provide
the ground truth which is matched very well after the bias correction.
The real data example indicates the robustness and superiority of the
new approach.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a wideband array processing method that
works in the CWT domain for automatic dispersion extraction from a
set of received waveforms. Experimental evaluation on both synthetic
and real field data shows that the method is superior to existing methods
and requires no post processing. Future work includes extending this
to handle multiple modes, though for the non-overlapping case, one
approach is briefly mentioned here.
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