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ABSTRACT

By means of the Parallel Factor (PARAFAC) decomposition,
we present a novel method working on a vector-sensor array
for blind separation of polarized sources in virtue of their dis-
tinct spatial and temporal signatures. Identi ability is studied,
and explicit constraints on the sources are derived to ensure
the data model identi able. We show, by numerical simula-
tions, that the estimation performance can approach that of
non-blind estimation by optimally designing the source po-
larizations.

Index Terms— Multidimensional signal processing, Ar-
ray signal processing, Polarization, Direction of arrival esti-
mation, Identi cation

1. INTRODUCTION

Following the recent development of the electromagnetic vec-
tor sensor technology, it is now possible to consider polar-
ization as an additional diversity for blind beamforming as
proposed by [1]. An electromagnetic sensor is composed of
6 spatially collocated but diversely polarized antennas, mea-
suring all 6 components of the incident electromagnetic eld
[2]. Regardless of the mutual interference and the noise ef-
fects, these measurements are shown to t a three-way Paral-
lel Factor (PARAFAC) model. In this paper, we address the
problem of model identi ability using polarization diversity.
We precisely state the physical constraints, under which this
model is identi able. Optimizing source polarizations is pro-
posed to enhance the performance of this blind beamforming
strategy. Furthermore, we illustrate by simulations the per-
formance of source signal estimation comparing to those of
non-blind source separation methods [3].

2. DATAMODEL

Consider a uniform array built up with M identical sensors
spaced by Δx along the x-axis, collecting narrow-band sig-
nals emitted from N (N ≤ M and known a priori) far- eld
sources. For the nth incoming wave, the direction of arrival
(DOA) is determined by the elevation angle θn ∈ [0, π] (mea-
sured from+z-axis) and the azimuth angleφn ∈ [0, π]1 (mea-

1We assume the sources are all coming from the +y side of the x − z

plane.

sured from+x-axis), as de ned in [3]. Under the far- eld as-
sumption, the steering vector for the nth impinging wave can
be modeled in a Vandermonde structure as

aaan
�
=

[
1, an, . . . , aM−1

n

]T
, (1)

where an = exp(jk0Δx sin θn cosφn) is the inter-sensor
phase shift and k0 is the wave number.
We use a 2× 1 complex vector

gggn =

[
cosαn − sinαn

sin αn cosαn

] [
j sin βn

cosβn

]

to describe the polarization state of the nth signal in terms of
the orientation angleαn ∈ (−π/2, π/2] and the ellipticity an-
gle βn ∈ [−π/4, π/4] [4]. Suppose the signals are completely
polarized, and the propagation takes place in an isotropic, ho-
mogeneous medium. The normalized electric and magnetic
elds of the nth incoming wave, eeen and hhhn, can be put to-
gether in a 6× 1 vector bbbn in Cartesian coordinates [2]:

bbbn
�
=

[
eeen

hhhn

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θn cosφn − sinφn

cos θn sin φn cosφn

− sin θn 0
− sinφn − cos θn cosφn

cosφn − cos θn sin φn

0 sin θn

⎤
⎥⎥⎥⎥⎥⎥⎦

gggn.

(2)
For notation compactness, we useΠn to denote the 6×2ma-
trix on the righthand side of (2), hence we have bbbn = Πngggn.
Assume no power loss during the wave propagation and

neglect all the mutual coupling effects inner- or inter-sensors.
Focus on the mth (m = 1, 2, . . . , M ) vector-sensor, which
outputs 6 parallel discrete-time baseband-equivalent data
ows simultaneously. Let p (p = 1, 2, . . . , 6) index the six
eld components. The pth output, xm,p(tk) (k = 1, 2, . . . , K
andK ≥ N ), is obtained by summing up all the contributions
from the N wavefronts, i.e.,

xm,p(tk) =

N∑
n=1

am−1

n [bbbn]psn(tk) + nm,p(tk), (3)

with the following notations:
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[ · ]p the pth component of a vector;
sn(tk) kth temporal sample of the nth source signal;
nm,p(tk) additive white noise, i.i.d. form, p, and tk.
Let us de ne respectively

A
�
= [aaa1, . . . ,aaaN ] (4)

B
�
= [bbb1, . . . , bbbN ] = [Πggg1, . . . ,ΠgggN ] (5)

S
�
=

⎡
⎢⎣

s1(t1) · · · sN (t1)
...

. . .
...

s1(tK) · · · sN (tK)

⎤
⎥⎦ (6)

as the M × N array response, the 6 × N polarization-
dependent response of each vector-sensor, andK ×N source
signal matrix. We also de ne theM ×K matrix

X̃p
�
=

⎡
⎢⎣

x1,p(t1) · · · x1,p(tK)
...

. . .
...

xM,p(t1) · · · xM,p(tK)

⎤
⎥⎦ (7)

collecting the compact data measured on the pth component
of allM sensors. If the entire data set {X̃p | p = 1, . . . , 6} is
organized in anM ×K × 6 tensor X̃ , the data model formu-
lated in (3) can be re-expressed in the form

X̃p = ADp(B)ST + Np, p = 1, . . . , 6., (8)

where Dp(B) = diag ([bp,1, . . . , bp,N ]) is a diagonal matrix
which takes the pth row ofB as its diagonal, and bp,n = [bbbn]p
is the (p, n)th entry of B.
Equations (8) clearly expresses a 3-way PARAFAC struc-

ture of the recorded data [5].
3. IDENTIFIABILITY AND BLIND BEAMFORMING

PERFORMANCE
3.1. Identi ability of Noise-Free Data Model

LetX �
= X̃ −N be the noise-free data, then the pth slice,Xp,

is equal to

Xp = ADp(B)ST , p = 1, . . . , 6, (9)

and X can be unfolded into a 6M ×K matrix:
⎡
⎢⎣

X1

...
X6

⎤
⎥⎦ =

⎡
⎢⎣

AD1(B)ST

...
AD6(B)ST

⎤
⎥⎦ = (B�A)ST (10)

where� is the Khatri-Rao (column-wise Kronecker) product.
To obtain a unique and valid solution for the inverse prob-

lem posed in (10), identi ability must be studied before sep-
arating the source signal mixture. Kruskal’s condition is a
suf cient condition for unique PARAFAC decomposition, re-
lying on the concept de ned as Kruskal-rank or k-rank [6].
K-rank: Given a matrix A ∈ C

I×J , if every linear com-
bination of l columns has full column rank, but this condition

does not hold for l + 1, then the k-rank of A is l, written as
kA = l.
Note that kA ≤ rank(A) ≤ min(I, J), and both the

equalities hold when rank(A) = J .
Kruskal’s condition was rst established for trilinear de-

composition of real-valued arrays [6], and later extended by
[7] to complex-valued cases. In our context, this uniqueness
condition can be formulated as follows.
Kruskal’s condition: Consider a 3-way array X that can

be unfolded into matrix form as in (10). Decomposition into
three matrices A, B and S is unique up to column permuta-
tion and scaling ambiguities, if but not necessarily

kA + kB + kS ≥ 2(N + 1). (11)

In separating two sources, if one source comes from
(θ, φ) and the other from (π − θ, φ), the linear independence
between A’s columns is violated, which makes the model
unidenti able. An L-shaped array is herein adopted to elim-
inate this ambiguity. The L-shaped array involved here is
constructed by posingMz sensors along the +z-axis and the
M −Mz others along the +x-axis, resulting in the following
expression for the steering vector:

aaan =
[
aMz−1

n,z , . . . , an,z, 1, an,x, . . . aM−Mz

n,x

]T
, (12)

where an,z = exp(jk0Δx cos θn),
an,x = exp(jk0Δx sin θn cosφn).

Now we make the following assumptions on the mixture
of unknown sources in order to to satisfy Kruskal’s condition.

(A1) Sources have distinct DOAs, i.e., any two
sources have at least one different parameter,
either θ or φ.

(A2) Each source sequence is drawn from an un-
known stochastic process of continuous distri-
bution.

Due to the particular structure of A’s columns depicted
in (12), it is straightforward to show that (A1) guarantees
rank(A) = N and hence kA = N . Since (A2) imposes
the full rank condition on the signal matrix S, it follows that
kS = N . If kB ≥ 2 is further veri ed, then Kruskal’s condi-
tion can be satis ed to achieve unique PARAFAC decompo-
sition. We will prove this by contradiction.
Assume kB < 2, then there must exist at least one pair of

linear dependent columns, namely bbb1, bbb2, so that

|bbbH
1

bbb2| = ‖bbb1‖‖bbb2‖. (13)

Let (θ1, φ1) and (θ2, φ2) denote the DOA of any two
sources, and assume φ2 > φ1 with the difference Δφ =
φ2 − φ1. With Σ and ε respectively given by

Σ ={(cos θ1 + cos θ2)
2 sin2 Δφ

+ [sin θ1 sin θ2 + (1 + cos θ1 cos θ2) cosΔφ]2} 1

2 (14)

ε =tan−1
(cos θ1 + cos θ2) sin Δφ

sin θ1 sin θ2 + (1 + cos θ1 cos θ2) cosΔφ
(15)
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after tedious computations, one may have

Π
H
1
Π2 = Σ

[
cos ε − sin ε
sin ε cos ε

]
. (16)

Denote Σmax as the maximum of Σ, then the ratio Σ/Σmax

re ects the angle between the wavefronts of the two sources,
and ε depicts the angle between their electric/magnetic elds.
De ne Ωε that satis es

cosΩε = sin 2β1 sin 2β2 + cos 2β1 cos 2β2 cos 2(α2 − α1 +
ε), and denote Ω0 = Ωε(ε = 0), which is the polarization
separation2 de ned in [4], then we have

|bbbH
1

bbb2| = |gggH
1
Π

H
1
Π2ggg2| = Σ

√
(1 + cosΩε)/2. (17)

Since Σ is de ned for θ1, θ2 ∈ [0, π] andΔφ ∈ [0, π], the
maximum of Σ is achieved only if the partial derivatives

∂Σ

∂θ1

= 0,
∂Σ

∂θ2

= 0,
∂Σ

∂Δφ
= 0,

which result in Σmax = 2, when (θ1, φ1) = (θ2, φ2) or θ1 =
θ2 = 0, i.e., the DOAs of the sources are identical; hence
‖bbb2‖ = ‖bbb1‖ =

√
|bbbH

1
bbb1| = Σ

1/2

max. On the contrary, when
sources have distinct DOAs, i.e. (A1) holds, (17) yields

|bbbH
1

bbb2| = Σ
√

(1 + cosΩε)/2 ≤ Σ < Σmax = ‖bbb1‖‖bbb2‖,
(18)

which contradicts (13) and ful ls the proof of kB ≥ 2.
In general, the assumptions (A1) and (A2) can suf ciently

satisfy Kruskal’s condition (11) and ensure that the model is
identi able for most occasions.

3.2. Blind Beamforming Performance
To assess the noise effect on the beamforming performance,
consider the average input SNR at the receiver de ned as [7]

SNR = 10 log
10

‖X‖2F
E‖N‖2F

(19)

where ‖ · ‖F stands for the Frobenius norm, and E(·) denotes
the statistical expectation. Note that the power of source sig-
nals ‖S‖2F is determined by the transmitters, thus

‖X‖F = ‖(B�A)ST ‖F ≤ ‖B�A‖F · ‖S‖F (20)

and equality holds only if all the columns of B �A are or-
thogonal, that is,

(B�A)H(B�A) = (BH
B) ◦ (AH

A) ∝ IN , (21)

where ◦ is the Hadamard (element-wise) product.
2Polarization separation is de ned when two sources have the same DOA

in [4]. If two sources have different DOAs, ΠH

1
Π2 projects the wavefront

of the 2nd source onto that of the 1st one, so that we can still quantify their
polarization separation as if they were from the same DOA.

Restricted by ‖A‖F = M
√

N and ‖B‖F = Σmax

√
N =

2
√

N , (21) holds only if both A and B are orthogonal, and
the maximum of ‖X‖F can be achieved, written as

max
A,B

‖X‖F = max
A,B

‖B�A‖F · ‖S‖F = 2M
√

N‖S‖F .

(22)
Normally, neitherA norB is orthogonal; however, given

the same power of source signals and the same noise level,
reducing the inner-products between their inter-columns can
increase the average input SNR of the observations, and hence
improves the performance of blind beamforming. The source
polarizations are more exible for performance enhancement
compared to their DOAs. Recall (5) that relates the matrix
B to all source polarizations ggg1, . . . , gggN . Since the diagonal
of BH

B equals ΣmaxIN , givenA, S, and E‖N‖2F , (19) can
be optimized by selecting a set of polarizations from G =
{gggn| ‖gggn‖ = 1, n = 1, . . . , N} to ful l

min
ggg1,...,gggN∈G

‖BH
B− ΣmaxIN‖2F . (23)

i.e., minimizing the overall mutual interference power. Opti-
mizing (23) can be accomplished via the Nelder-Mead sim-
plex algorithm (implemented in MATLAB as “fminsearch”
function) with respect to [α1, . . . , αN , β1, . . . , βN ]T , which
is de ned on a continuous convex domain rather thanG.

4. SIMULATIONS
The COMFAC algorithm [7] is adopted to achieve fast, accu-
rate convergence for factorization of trilinear complex-valued
tensors. Monte Carlo simulations are designed to evaluate the
performance of the proposed algorithm in terms of the root
mean square error (RMSE), as given by

RMSE =

√√√√ 1

LNK

L∑
l=1

‖Ŝl − S‖2F , (24)

where Ŝl is the estimate of S obtained in the lth trial. L =
500 independent experiments contribute to each data point in
these gures. All the noise is assumed to be Gaussian.
The effects on identi ability of the model while using the

L-shaped sensor array are compared to those of a uniform ar-
ray, as shown in Fig.1. A number of M = 13 sensors and
K = 50 snapshots are used for both types of array. SNR
is 20dB for all these simulations. One source is nominated
the reference source, which has a set of xed parameters as
θ1 = 78.4◦, φ1 = 102.8◦, α1 = 35.8◦, and β1 = 32.9◦;
while the other one, namely the variable source, varies either
on θ2 (Fig.1(a)) or on φ2 (Fig.1(b)). Fig.1(a) shows the ad-
vantage of using L-shaped array over the uniform array on
the model identi ability by eliminating the ambiguity of the
two sources having supplementary elevation angles. Fig.1 nu-
merically veri es the ef ciency of the assumptions (A1) and
(A2) as suf cient conditions for the identi ability of this mix-
ture model.
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Fig. 1: RMSE of Signal Estimation vs. Angular Separation
of Sources

Other than the L-shaped array manifold, the blind beam-
forming performance can also be enhanced by the optimal de-
sign of source polarizations, especially when the two sources
are closely located, as shown in both Fig.1(a) and (b). Com-
paring the curves of identically polarized sources with those
of orthogonally polarized, it shows that polarization separa-
tion becomes as an essential factor on the performance of
blind source separation if lacking of angular separation be-
tween the two sources. As two sources are getting closer to
each other, ε → 0 and Σ → Σmax, from (17), |bbbH

1
bbb2| ≈

Σmax

√
(1 + cosΩ0)/2, which indicates the source polariza-

tion separations can completely determine the column inner-
products ofB, and hence the performance.

Assuming that the parameters are all known a priori or
perfectly estimated, the source signals can be recovered un-
der least mean square (LMS) criterium [3]. Fig.2 shows the
performance of using our method compared to the non-blind
LMS estimators, where M = 6 sensors are used to separate
N = 4 closely posed sources. By optimally designing the
source polarization according to (23), the performance of the
proposed algorithm can be enhanced by approximately 10dB,
approaching to that of the non-blind separation methods.
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Fig. 2: Blind PARAFAC vs. Non-blind LMS

5. CONCLUSIONS

A link has been established between three-way PARAFAC de-
composition and the vector-sensor array for blind beamform-
ing for polarized signals. We proved that, with an L-shaped
array, identi ability can always be achieved as long as the
sources have distinct DOAs. Polarization is not essential to
the identi ability of this model; however, optimal selection
of the source polarizations yields performance improvement
for the source separation. In particular, even if the sources are
closely located, simulation results show that the performance
of the proposed algorithm is still close to those of classical
non-blind source separation methods by optimally designing
the polarization of the sources.
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