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ABSTRACT
Orthogonal space-time block codes (OSTBCs) represent an attrac-
tive choice of space-time coding scheme because of their simple
maximum-likelihood (ML) decoding and full diversity property. Ho-
wever, the code orthogonality property limits their achievable trans-
mission rate. In this paper, new high-rate block codes are proposed
that are referred to as orthogonal structure based STBCs. To obtain
these codes, the proposed design adds extra-symbols to the OSTBC
matrix using different reasonable strategies. Because of the inter-
nal OSTBC structure of the proposed designs, the ML decoder can
be implemented in a fast way. Simulations validate an improved
performance-to-complexity tradeoff of the proposed codes as com-
pared to several other popular choices of space-time codes.

Index Terms— Space-time coding, fast maximum-likelihood
decoding

1. INTRODUCTION

OSTBCs [1] are a popular choice of space-time codes, because they
achieve full diversity at a low maximum likelihood (ML) decoding
complexity. However, their transmission rate is limited by the code
orthogonality.
To overcome this drawback while retaining low decoding com-

plexity, quasi-orthogonal space-time block codes (QOSTBCs) have
been proposed in [2]-[4]. The latter codes achieve higher rates than
OSTBCs but at the price of losing the full diversity property. How-
ever, the full diversity property of QOSTBCs can be recovered by
using symbol rotation [5]-[7].
Several other approaches to the design of high-rate space-time

codes achieving full diversity for any number of transmit antennas
have been proposed, but the decoding complexity of most of these
codes is quite high. Recently, several space-time codes with a lower
ML decoding complexity than that of the standard QOSTBCs have
been proposed [8], [9].
Below, we develop a new class of STBCs that offer an attractive

tradeoff between the performance and decoding complexity for sev-
eral practically important cases. The general idea of our designs is
related to that of [10]-[11] in the sense that we also use the OSTBC
structure to construct higher-rate codes. Our specific approach to de-
sign the code generator matrix is, however, different from that used
in [10] and [11], and mainly follows the idea of [12].
To demonstrate the advantages of the proposed designs, we de-

velop several useful code design strategies in the case of four trans-
mit antennas, and additionally show that the latter designs can be
used in the case of three transmit antennas as well. It is shown that
the resulting rate-one codes achieve full diversity and their perfor-
mance is comparable to the best rate-one STBCs known so far. At

the same time, the proposed codes have a substantially reduced ML
decoding complexity as compared to the current state-of-the-art rate-
one STBCs.

2. SYSTEMMODEL

Let us consider a wireless MIMO communication system with Nt

transmit and Nr receive antennas. We assume a flat block-fading
channel with the block length T . The input-output relation for such
a MIMO system can be expressed as [1]

Y = HX + V (1)

whereX is theNt×T complex matrix of the transmitted signals,H
is the Nr × Nt complex channel matrix,V is the Nr × T complex
noise matrix, and Y is the Nr × T complex matrix of the received
signals. The entries of H and V are assumed to be i.i.d. random
variables with the probability density functions (pdf’s) CN (0, 1)
and CN `

0, σ2
´
, respectively. Here, CN (·, ·) denotes the complex

Gaussian pdf and σ2 is the noise variance.
It is assumed that the channel is perfectly known at the receiver,

and that the K symbols sk, k = 1 . . . K transmitted per block are
drawn from an M -point constellation S̄ and encoded to form the
matrixX as [14]

X =

KX
k=1

(srkC2k−1 + sikC2k) (2)

where srk and sik are the real and imaginary parts of sk, respectively,
{Ck}2K

k=1
is a set of complexNt ×T matrices that are subject to the

following constraint

2KX
k=1

tr(CH
k Ck) = 2TNt . (3)

Here (·)H denotes the Hermitian transpose and tr(·) stands for the
trace of a matrix.
Now, let us obtain an equivalent real-valued system model of (1)

by defining the “underline” operator which transforms any I × J
matrix Z into a 2IJ × 1 real column vector as follows [12], [13]

Z � [Re {Z11} , Im {Z11} , Re {Z21} , Im {Z21} ,

. . . , Re {ZIJ} , Im {ZIJ}]T (4)

whereRe{·} and Im{·} denote the real and imaginary parts, respec-
tively. Applying (4) to (1), we have [12]

Y = HX + V (5)
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where H = 1

2
IT ⊗ (H ⊗ E + H∗ ⊗ E∗), E =

»
1 j
−j 1

–
, j =

√−1, IT is the T × T identity matrix, ⊗ denotes the Kronecker
matrix product, and (·)∗ stands for the complex conjugate. Inserting
(2) in (5), we obtainX = Gs where the 2NtT × 2K real matrix

G � [C1 C2 · · · C2K ]

is the code generator matrix, and s is the underline version of the
symbol vector s = [s1 . . . sK ]T .

3. THE ML DECODER

Let us introduce the constellation S � {s1, . . . , sL} for the vector s,
where where the cardinality of S is L = MK [12]. For any received
signal matrixY in (5), the coherent ML decoder finds

ŝ = arg min
s∈S

‖Y − HGs‖ (6)

where ‖·‖ is the Euclidean norm. If we apply the QR-decomposition
to the matrix HG, (6) can be expressed as

ŝ = arg min
s∈S

‚‚‚‚Y − Q

»
R

O

–
s

‚‚‚‚ (7)

where Q is a 2NrT × 2NrT orthogonal matrix, R is a 2K × 2K
upper-triangular matrix, and O is a (2NrT − 2K) × 2K matrix of
zeros. Using the orthogonality property ofQ, (7) can be reduced to

ŝ = arg min
s∈S

‖Y̆ − Rs‖ (8)

where Y̆ is composed by the first 2K entries ofQT Y.
To guarantee the uniqueness of the optimal ŝ, the matrix R

should be full rank. Hence, H should be full-rank and NrT ≥ K.

4. ORTHOGONAL STRUCTURE BASED STBCS

Using the fact that for any OSTBCX, the matricesCk should fulfill
[15]

CkC
H
k = INt

, CkC
H
p = −CpC

H
k , k �= p (9)

for k = 1, . . . , 2K and p = 1, . . . , 2K. It can be proved that

G
T
ostbcH

T
HGostbc = ‖H‖2

F I2K (10)

where ‖·‖F is the Frobenius norm andGostbc is the OSTBC genera-
tor matrix. According to the constellation space invariance property
of OSTBCs [13], the orthogonality ofGostbc remains invariant to the
skewing effects of the channel matrix, guaranteeing that the coherent
ML decoder can be implemented as a simple real symbol-by-symbol
decoder.
In order to take advantage of the constellation space invariance

property of OSTBCs to simplify the decoder, we choose as many first
columns of G as possible from a proper OSTBC (or equivalently, as
many matrices Ck as possible from this OSTBC) so that Ko com-
plex symbols are encoded. Now, we add the rest of 2(K − Ko)
linearly independent columns that are necessary to complete the ma-
trix G. Hence, G takes the form

G = [Gostbc, Gadd]

where Gadd is the 2NtT × 2(K − Ko) matrix containing extra-
columns added to the code generator matrix to design orthogonal
structure based STBCs (OSB-STBCs).

According to (10), for the resulting OSB-STBC, the matrixR in
(8) has the following form

R =

»
γI2Ko

A

O B

–
(11)

whereA is a 2Ko × 2(K −Ko) general-type matrix,O is a 2(K −
Ko)×2Ko matrix of zeros,B is a 2(K−Ko)×2(K−Ko) upper-
triangular matrix, and γ is some constant. Let s̃ � [s1, . . . , s2Ko

]T

and s̆ � [s2Ko+1, . . . , s2K ]T so that s = [s̃T , s̆T ]T . Using (11), we
can rewrite (8) as

ŝ = arg min
s∈S

‚‚‚‚Y̆ −
»

γs̃ + As̆

Bs̆

–‚‚‚‚ . (12)

We observe that for any given s̆, the value of s̃ that minimizes the
metric in (12) can be found by a real symbol-by-symbol decoding
procedure. Therefore, in (12) it is only necessary to inspect the met-
ric for all possible combinations of s̆ in order to find ŝ. This reduces
the decoding complexity.

4.1. Rate-One OSB-STBC

A reduced complexity of the ML decoder makes OSB-STBCs attrac-
tive in the cases when OSTBCs can achieve a reasonably high rate.
For example, using the idea of OSB codes, a full-rate full-diversity
2 × 2 OSB-STBC with non-vanishing determinants has been devel-
oped in [12]. However, in the case of three or more transmit antennas
and full rate, the ratioKo/K decreases and, therefore, the complex-
ity advantage of the decoder becomes insignificant.
In the practically important case of three and four antennas, we

can keep the value ofKo/K high enough by restricting the code rate
to be one. For this case, it is only necessary to aggregate one com-
plex symbol to the OSTBC matrix (or, equivalently, two columns to
the code generator matrix) to construct our OSB-STBC.
In what follows, we will present different strategies for design-

ing the additional matrices Ck, k = Ko + 1, . . . , K for the case of
Nt = 4. For Nt = 3, the same code can be used by removing, for
instance, the last row of the matrix X. Our design is based on the
following 4 × 4 OSTBC [15]:

X =
4√
3

2
64

s1 −s∗2 s∗3 0
s2 s∗1 0 s∗3
s3 0 −s∗1 −s∗2
0 s3 s2 −s1

3
75 . (13)

Our first strategy is to constrain the columns added to G to be
orthogonal to the original “OSTBC” columns ofG and to each other.
In the full-rate case (NtT = K), it has been shown that an orthog-
onal G is a sufficient and necessary condition for the code to be
information lossless [16], [17]. LetN be a 2NtT × 2(NtT − Ko)
matrix whose columns form an orthogonal basis for the null-space
of G

T
ostbc. Orthogonal columns (that are the candidate columns for

Gadd) can be obtained as those of the 2NtT × 2(NtT −Ko)matrix
NU whereU is any 2(NtT −Ko)×2(NtT −Ko) orthogonal ma-
trix that can be parameterized using, for instance, Givens rotations
[18]. Since only two columns are added in the rate-one STBC case
with Nt = 4, only the first two columns of U are needed. Using
Givens rotations parametrization for the first two columns ofU, we
can take into account only the rotations that are involved in these
two columns, thereby reducing the number of parameters to be opti-
mized. The Givens rotations parameters are angles between −π and
π, and any global search algorithm (such as the genetic algorithm)
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can be employed to optimize the OSB-STBC according to a certain
criterion. A suitable criterion for such a design is the diversity prod-
uct [7], [19] that for T = Nt is defined as

ζ =
1

2
√

Nt

min
X,X′∈X

X�=X
′

˛̨
det

`
X − X

′
´˛̨ 1

Nt (14)

where X � {X1, . . . ,XL} is the codebook of the codeword ma-
trices X and X′. Maximizing ζ, we ensure that the designed OSB-
STBC will provide full diversity with a high coding gain. In the
maximization of ζ, the codeword matrixX is a function ofG, whose
last two columns depend on the optimization variables (the Givens
rotations parameters). We have maximized ζ for the 4-QAM con-
stellation over these parameters using the genetic algorithm and then
used the output of such optimization as a starting point for a local
search. The resulting code is denoted as OSB-STBC-1.
Our second strategy of the OSB-STBC design is to add s4 to the

anti-diagonal of (13) to obtain the code matrix

X =

2
64

s1 −s∗2 s∗3 s4

s2 s∗1 s4 s∗3
s3 s4 −s∗1 −s∗2
s4 s3 s2 −s1

3
75 . (15)

Clearly, this operation corresponds to adding two orthogonal colum-
ns to Gostbc and, therefore, the resulting code belongs to the class
of OSB-STBC codes. However, as the minimal determinant of the
codeword difference matrix is zero in this case, the resulting code
will not achieve full diversity. Using (14), it can be readily shown
that to achieve full diversity, we need to satisfy s̃2

i4 �= s̃2
r1 + s̃2

i2 + s̃2
i3

and s̃2
r4 �= s̃2

i1 + s̃2
r2 + s̃2

r3, where s̃k � sk − s′k, k = 1, . . . , 4
and s �= s′. These inequalities can be easily satisfied by rotating the
constellation for s4.
Note that it is desirable not only to satisfy the full diversity prop-

erty, but also to obtain a high coding gain. In the particular 4-QAM
case, both objectives can be achieved by maximizing ζ as follows

βopt = arg max
β

ζ . (16)

Using this strategy, we have obtained that the optimal rotation angles
are βopt = {π/6, π/3}. We denote the OSB-STBC with one of this
rotation angles as OSB-STBC-2. A similar strategy was presented
in [10] where the two upper anti-diagonal entries were s∗4 rather than
s4 and the coding gain was not optimized.
The previous design has only one degree of freedom that can be

utilized by optimizing ζ. Although the optimal ζ can be easily ob-
tained, the performance can be further improved by designing a code
with a reduced kissing number, that is, a reduced number of code-
word difference matrices that result in the same worst-case value of
ζ.
If we let each entry in the anti-diagonal of (15) to have an in-

dependent rotation, denote the vector of rotation angles as β =
[β1,4 β2,3 β3,2 β4,1]

T , where βm,n is the rotation angle for the
(m, n)th entry ofX, and optimize the code over β, the kissing num-
ber can be reduced. Doing so, we obtain the following optimal value
of β:

βopt = [1.9267 − 0.9526 − 1.0622 − 0.9493]T . (17)

This code corresponds to our third strategy and is denoted as OSB-
STBC-3.
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Fig. 1. BERs of the proposed OSB-STBCs versus SNR.

5. SIMULATIONS

We assume a multiple-input single-output (MISO) systemwithNt =
T = 4 and 4-QAM symbols. In the first example, we compare
only the three proposed OSB-STBCs to identify the best code among
them. Fig. 1 shows the bit error rates (BERs) for these codes versus
the signal-to-noise ratio (SNR). As it can be seen from this figure,
OSB-STBC-3 achieves the best performance among the three pro-
posed codes. This fact can be explained by a lowered kissing number
of this code.
Next, we compare the performance of OSB-STBC-3 with the

following popular rate-one STBCs:

• QOSTBC with rotated constellation [7];
• coordinate interleaved orthogonal design (CIOD) [9];
• STBC based on linear constellation precoding (LCP) [20];
• diagonal algebraic space-time (DAST) code with real-valued
rotation [21].

The Schnorr-Euchner variant of the sphere decoder (SD) has been
employed for decoding [22]. In CIOD of [9], four parallel SDs were
used to decode each symbol. In QOSTBC, two parallel SDs were
employed to decode each pair s1, s4 and s2, s3. In the DAST code
[21], two parallel SDs were used to decode the imaginary and real
parts of each symbol separately. In the LCP code of [20] only one
SD was employed. Note that the proposed OSB-OSTBCs also re-
quire one SD which is used to decode s4, and the other symbols
are decoded in the symbol-by-symbol way [12]. From Fig. 2, it can
be observed that the performances of OSB-STBC-3, QOSTBC, and
CIOD are very close to each other and are the best among the codes
tested.
Fig. 3 displays the average number of points (i.e., the number

of vectors s) visited by the decoder for all the codes tested versus
SNR. From this figure, it can be observed that OSB-STBC-3 has the
lowest decoding complexity among these codes.

6. CONCLUSIONS

New high-rate orthogonal structure based STBCs are developed that
enjoy fast ML decoding. To obtain these codes, the proposed design

2387



4 8 12 16 20 24
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

B
E
R

LCP [20]
CIOD [9]

OSB-STBC-3

DAST[21]

QOSTBC[7]

SNR (dB)

Fig. 2. BER of different rate-one STBCs versus SNR.

adds extra-symbols to the OSTBC matrix using different theoreti-
cally motivated strategies. The developed codes have been demon-
strated to achieve a substantially improved performance-to-comple-
xity tradeoff as compared to several current state-of-the-art rate-one
STBCs.
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