
BLIND CHANNEL ESTIMATION IN MIMO-OFDM SYSTEMS USING
SEMI-DEFINITE RELAXATION

Nima Sarmadi Alex B. Gershman

Communication Systems Group
Technische Universität Darmstadt
64283 Darmstadt, Germany

Shahram Shahbazpanahi

Faculty of Engineering and Applied Science
Institute of Technology University of Ontario

Oshawa, L1H7K4, ON, Canada

ABSTRACT
A new blind channel estimation technique for multiple-input
multiple-output orthogonal frequency-division multiplexing
(MIMO-OFDM) systems is proposed. It estimates the chan-
nel parameters in the time domain jointly for all subcarri-
ers instead of doing this in the frequency domain indepen-
dently for each subcarrier. This results in a substantially im-
proved parsimony of the channel parameterization along with
the ability to use coherent processing across the subcarriers. It
is shown that using semi-definite relaxation (SDR), our chan-
nel estimation problem can be transferred to a convex form
and then solved efficiently using modern convex optimization
tools.

Index Terms— Blind channel estimation, space-frequen-
cy coding, MIMO-OFDM systems, semi-definite relaxation

1. INTRODUCTION

Space-time coding (STC) techniques used in MIMO wire-
less systems are known to offer substantially improved trans-
mission rate and immunity to fading as compared to single-
antenna systems [1]. In particular, orthogonal space-time blo-
ck codes (OSTBCs) [2] represent an attractive choice because
they achieve full diversity at low decoding complexity. Space-
time coded MIMO systems can also be used in conjunction
with the orthogonal frequency-divisionmultiplexing (OFDM)
scheme, and this allows to combine the advantages of multi-
antenna and multi-carrier transmissions [3]. However, the
performance of such MIMO-OFDM systems critically depe-
nds on the quality of the channel state information (CSI) avail-
able at the receiver. Although training-based approaches are
commonly used for channel estimation in multi-antenna sys-
tems, a promising recent trend is to estimate the channel using
spectrally efficient blind techniques [4]-[9].
Most of the blind estimation methods can only deal with

flat fading channels; see, for example, [4] and [5]. There are
also several blind methods for identifying frequency-selective
MIMO channels (for example, see [6] and references therein)
which do not assume any space-time coding and, therefore,
are not able to take advantage of the orthogonal structure of

the codes used. There are several promising approaches to
channel estimation in space-time coded MIMO-OFDM sys-
tems [7]-[10]. However, the techniques of [7] and [8] are only
applicable to the case of two transmit and one receive anten-
nas, while the approach of [9] generally requires the number
of receive antennas to be not less than the number of trans-
mit antennas1. Obviously, the latter restriction may be critical
for the downlink mode. The semiblind approach of [10] re-
quires to transmit pilot symbols for a part of subcarriers used.
Another common approach to channel estimation in MIMO-
OFDM systems is to estimate flat fading channels at each sub-
carrier independently in the frequency domain [11]. However,
this method does not enable coherent processing across the
subcarriers and may suffer from a high computational cost in
the case when the total number of subcarriers is large.
Below, we propose an approach that is free of the afore-

mentioned drawbacks of the earlier methods. Our technique
is applicable to any numbers of transmit and receive anten-
nas and it efficiently exploits the orthogonal structure of the
underlying space-frequency code. Moreover, it uses coherent
processing across the subcarriers to estimate the channel in
the time domain.

2. BACKGROUND

The input-output relationship for a point-to-point MIMO sys-
tem with N transmit andM receive antennas and frequency-
selective finite impulse response (FIR) multipath channel with
L + 1 efficient taps can be expressed in the time domain as
[1]

Z(n) =

L∑
l=0

Φ(n− l)Gl + E(n) (1)

where Z(n) is a T × M matrix of the received data whose
(p, m)th entry [Z]p,m(n) is the sample received during the pth
burst via the mth receive antenna at the nth time interval, Φ
is a T ×N matrix of the transmitted data, T is the number of

1For specific types of codes the approach of [9] is also applicable when
the number of receive antennas is lower than the number of transmit antennas.
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bursts,Gl is the lthN ×M complex channel matrix that cor-
responds to the lth tap, andE is a T ×M matrix of noise. We
assume that the noise is both spatially and temporally white
with variance of σ2 per complex dimension. After serial-to-
parallel conversion, we get at the transmitter side K parallel
data streams of lengthN0 whereK is the number of complex
information symbols prior to encoding and N0 is the num-
ber of orthogonal subcarriers. These symbol streams are then
space-frequency encoded using the same orthogonal code by
mapping them onto a sequence of T × N matrices {X(i)}
where i is the frequency index [1]. It is known [12] that due
to the inverse Fourier transform at the transmitter and Fourier
transform at the receiver, the frequency-selective fading chan-
nel can be converted toN0 parallel flat fading channels. Then,
(1) turns to the following frequency-domain input-output ma-
trix relation

Y(i) = X(i)Hi + V(i) (2)
where i is the subcarrier index. The relationships among
Y(i),X(i),Hi andV(i) and their time-domain counterparts
Z(n), Φ(n),Gl and E(n) are discussed in [1].
Let us introduce the following operators

[Y]p,m �

[
Re([Y]p,m) −Im([Y]p,m)
Im([Y]p,m) Re([Y]p,m)

]
(3)

Y �
[

vec{Re(Y)}T vec{Im(Y)}T
]T (4)

for any complex-valued matrix Y where vec{·} is the vec-
torization operator that stacks all columns of a matrix on the
top of each other, Re(·) and Im(·) denote the real and imagi-
nary parts, and (·)T denotes the transpose. Using the so-called
oversampled fast Fourier transform (FFT) matrix F (which is
built from the first L + 1 columns of N0-point normalized
FFT matrix) and (3)-(4), we can establish a compact linear
relation between the channel parameters in the frequency and
time domains as

h′ =
√

N0

(
F⊗ IMN

)
g′ (5)

where h′ �
[
hT

0 . . .hT
N0−1

]T , g′ �
[
gT

0 . . .gT
L

]T , IP is the
P × P identity matrix, hi � Hi, i = 0, . . .N0 − 1, gl � Gl,
l = 0, . . . , L, and ⊗ stands for the Kronecker matrix product.
Assume that prior to encoding,K complex information sym-
bols si = [si1, si2, ..., siK ]T corresponding to the ith subcar-
rier are zero-mean mutually uncorrelated random variables.
Also we assume that each space-frequency code matrixX(i)
has the properties of an OSTBC [2]. Then, we can rewrite the
input-output model (2) for each subcarrier as [5]

yi = A(hi)si + vi , i = 0, ..., N0 − 1 (6)

where yi � Y(i), vi � V(i), A(hi) � [C1Hi · · ·C2KHi],
and the matrices {Ck}

2K
k=1

are the OSTBC basis matrices for
X(i) which are known at the receiver [5]. The model (6) can
be expressed in a more compact form as

y′ = Ã(h′)s′ + v′ (7)

where y′ �
[
yT

0 . . . yT
N0−1

]T , s′ �

[
s0

T . . . sN0−1
T
]T

,

and v′ �
[
vT

0 . . . vT
N0−1

]T are the real vectors that integrate
the received data, transmitted data, and noise, respectively, for
all subcarriers, and

Ã(h′) �

⎡
⎢⎢⎢⎣

A(h0) 0 · · · 0

0 A(h1) 0
...

. . .
...

0 · · · 0 A(hN0−1)

⎤
⎥⎥⎥⎦ .

The size of the matrix Ã(h′) is 2MTN0×2KN0. Regardless
of the value of h′, the following orthogonality property holds:

ÃT (h′)Ã(h′) � D2 = diag{‖h0‖
2 . . . ‖hN0−1‖

2} ⊗ I2K

(8)
where ‖·‖ is the vector 2-norm or matrix Frobenius norm. As
Ã(h′) is linear in h′, there exists a unique matrixΨ such that

vec{Ã(h′)} = Ψh′ . (9)

Also, defining the covariance matrix of the received data as
R � E{y′y′

T
} where E{·} stands for expectation, and us-

ing the fact that the symbol streams and noise are mutually
uncorrelated at each subcarrier, we have

R = Ã(h′)Λs′Ã
T (h′) +

σ2

2
I2MTN0

(10)

where Λs′ � E{s′s′
T
} is a diagonal matrix known at the

receiver [5]. Multiplying (10) from the right by Ã(h′)D−1

and using (8), we have

RÃ(h′)D−1 = Ã(h′)D−1Λ (11)

where Λ �
(
Λs′D

2 + σ2

2
I2KN0

)
. As Ã(h′)D−1 has or-

thonormal columns and Λs′ andD2 both are diagonal matri-
ces, (11) can be considered as the characteristic equation for
the data covariance matrix R. This implies that the diagonal
elements ofΛ are the 2KN0 largest eigenvalues ofR and the
columns of Ã(h′)D−1 are the corresponding eigenvectors.

3. BLIND CHANNEL ESTIMATION

Consider the following constrained optimization problem

max
Q

tr{QT RQ} s.t. QT Q = I2KN0
(12)

whereQ is any 2MTN0×2KN0 real matrix withMT > K .
For the solution of this problem (Q∗), we have range{Q∗} =
range{Ã(h′)} and tr{QT

∗
RQ∗} = tr{Λ} [5], where tr{·}

and range{·} stand for the matrix trace and column range, re-
spectively. Let us replaceQ by Ã(h̃)D̃−1 in (12) where h̃ is
the vector of optimization variables and D̃ is obtained from
(8) by replacing h′ with h̃. With such a replacement, the con-
straint in the resulting problem will be always satisfied and,
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therefore, it can be dropped. Then, we obtain the following
unconstrained optimization problem

max
h̃

tr
{
D̃−1ÃT (h̃)RÃ(h̃)D̃−1

}
. (13)

Clearly, the maximum of the objective function in (13) can
not exceed that in (12) because of a particular structure of Q
in (13). Inserting (10) into (13) and using (11), we have

tr
{
D̃−1ÃT (h̃)RÃ(h̃)D̃−1

}∣∣∣
h̃=h′

= tr{Λ} . (14)

Therefore, the maxima of the objective functions in both prob-
lems (12) and (13) coincide. Hence, the true channel vector
h′ belongs to the subspace of all vectors that maximize (13).
To simplify (13), let us rewrite its objective function as

tr
{
D̃−1ÃT (h̃)RÃ(h̃)D̃−1

}
= vec{Ã(h̃)D̃−1}T (I2KN0

⊗R)vec{Ã(h̃)D̃−1} . (15)

Using (9), we have

vec{Ã(h̃)D̃−1} = (D̃−1 ⊗ I2MTN0
)vec{Ã(h̃)}

= (D̃−1 ⊗ I2MTN0
)Ψh̃ . (16)

Substituting (16) to (15), and using some properties of the
Kronecker product, we obtain

tr
{
D̃−1ÃT (h̃)RÃ(h̃)D̃−1

}
= h̃T ΨT (D̃−2 ⊗R)Ψh̃ .

(17)
Hence, the optimization problem (13) becomes equivalent to

max
h̃

h̃T ΨT (D̃−2 ⊗R)Ψh̃ . (18)

Assume that the channel norms for each subcarrier are known
at the receiver. This assumption mathematically corresponds
to the following constraint: D̃2 = D2. Adding this constraint
to (18), the latter problem becomes

max
h̃

h̃T ΨT (D̃−2 ⊗R)Ψh̃ s.t. D̃2 = D2 . (19)

Note that even if the channel norm at some ith subcarrier is
unknown, it can be recovered from the eigenvalues of Ri as
‖hi‖ =

√
(tr{Ri} −MTσ2)/tr{Λsi

}; see [5] for further
details. Let us express the constraint in (19) explicitly as

h̃T ST
i Sih̃ = ‖hi‖

2, i = 0, . . . , N0 − 1

where Si is the selection matrix built so that h̃T ST
i Sih̃ =

h̃T
i h̃i, and define two positive semi-definite matrices

Pf � ΨT (D−2 ⊗R)Ψ � 0 , T
f
i � ST

i Si � 0 (20)

where the superscript “f” refers to the frequency domain.
Both these matrices are known at the receiver. Then, we can
rewrite (19) as

max
h̃

h̃T Pf h̃ s.t. h̃T T
f
i h̃ = ‖hi‖

2, i = 0, . . . , N0 − 1 .

(21)

The main drawback of this formulation is that it is in the fre-
quency domain and, therefore, the number of the optimization
variables (i.e., unknown channel parameters to be estimated)
is rather high. However, we can use (5) to transfer the prob-
lem to the time domain and, therefore, dramatically reduce
the number of channel parameters. Doing so, we obtain an
equivalent problem

min
g̃
−g̃T Ptg̃ s.t. g̃T Tt

ig̃ = ‖hi‖
2 , i = 0, . . . , N0 − 1

(22)
where

Pt � N0(F
T
⊗ IMN )Pf (F⊗ IMN ) � 0

Tt
i � N0(F

T
⊗ IMN )Tf

i (F⊗ IMN ) � 0

and the superscript “t” refers to the time domain.
Note that in contrast to (21) the problem (22) can not

be decoupled for each subcarrier. Therefore, (22) offers a
way of coherent processing across the subcarriers. Also, (22)
provides much more parsimonious channel representation as
compared to (21).
The problem (22) is a non-convex quadratically constrai-

ned quadratic problem (QCQP) because −Pt is not positive
semi-definite. To reformulate this problem in a convex form,
let us define a matrix of new optimization variables G̃ � g̃g̃T

and approximate (22) as

min
G̃

−tr{G̃Pt}

s.t. tr{G̃Tt
i} = ‖hi‖

2, i = 0, . . . , N0 − 1, G̃ � 0 . (23)

The approximation made to obtain (23) from (22) is in that
a non-convex rank-one constraint rank{G̃} = 1 has been
replaced by a convex positive semi-definite constraint G̃ � 0.
This approximation is commonly referred to as semi-definite
relaxation (SDR).
The problem (23) is convex and can be efficiently solved

in polynomial time by means of convex optimization tools,
such as SeDuMi package [13]. It is worth noting that, al-
though we cannot prove this theoretically, it follows from
our simulations that the resulting optimal matrix G̃∗ obtained
from solving (23) is always rank-one. Therefore, the recovery
of the optimal vector g̃∗ from G̃∗ is straightforward.

4. SIMULATIONS

In each simulation run, the entries of Gl are independently
drawn from a Gaussian distribution with zero mean and vari-
ance σ2

g , and are then kept fixed for this run. It is assumed
that L + 1 = 3, N0 = 8, N = 3, M = 4, K = T = 4,
and the full-rate OSTBC of [2] with BPSK symbols is used
for space-frequency coding. In each run, 10 data blocks are
used to estimateR.
Fig. 1 compares the averaged over subcarriers nor-

malized channel frequency response estimation errors
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Fig. 1. Normalized channel frequency response estimation
error averaged over subcarriers versus SNR.

1

N0

∑N0−1

i=0
‖Ĥi −Hi‖

2/‖Hi‖
2 versus the signal-to-noise ra-

tio (SNR) for the proposed technique and the method of [5]
that estimates the channel at the per subcarrier basis.
Fig. 2 shows the symbol error rates (SERs) versus the

SNR for these two methods combined with the maximum
likelihood (ML) decoder. Additionally, the results for the in-
formed ML decoder are shown in this figure. The latter de-
coder is assumed to know the channel exactly.
It can be seen that, as expected, the proposed approach

substantially outperforms the technique of [5]. From Fig. 2,
it follows that the SER performance of our method combined
with the ML decoder closely achieves that of the informed
ML detector. This performance gain results from a substan-
tially improved parsimony of the channel parameterization
along with the ability to use coherent processing across the
subcarriers.
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