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ABSTRACT
We proposed a new signal transmission scheme for a multi-
input multi-output (MIMO) communication system, in which the
signals are encoded to span multi-block channel realizations and
received by a linear equalizer followed by a maximum likelihood
(ML) detector. The proposed system achieves a diversity gain
proportional to the number of blocks of channels over which the
signals span. The detection complexity is comparable to that of
a linear receiver, with additional complexity independent of the
number of antennas. A general criterion for designing the optimal
precoder is presented. A design example is provided. Simulation
results verify the effectiveness of such a combination.

Index Terms— MIMO, multi-block transmission, combined
linear and ML receivers, diversity gain

I. INTRODUCTION
Consider a MIMO communication system with M transmitter

and N receiver antennas. The channel is assumed to be of at
fading with the fading coef cient between the mth transmitter,
and nth receiver antennas being hnm. These hnm constitute an
N × M channel matrix, denoted by H , each element of which
is i.i.d. Gaussian distributed, i.e., CN (0, 1). Temporally, H is
assumed to remain constant for T time slots and may change
independently to other states after these time slots elapse. In other
words, if we let H � denote the channel states for the �th block of
T time slots, then H � is assumed to be statistically independent
from H j for � �= j. We also assume that the transmitter has no
channel state information (CSI) but only the statistical properties
of the channel, while the receiver has perfect knowledge of CSI.
In traditional MIMO communications, signals are transmitted

and received block by block as depicted in Fig. 1-(a). Each
block corresponds to one channel state, H �, and there is no
inter-relationship between different signal blocks. For such a
system, most available space-time block code (STBC) designs (
[1]–[7]) focus on the communication systems in which signals
are detected by an ML detector. The use of an ML detector
may enable a MIMO system to achieve full diversity MN ,
yielding superior performances to other receivers. However, it
also requires high computational cost rendering its application
impractical. On the other hand, a linear receiver is simple in
implementation and for a MIMO system with a linear receiver, the
optimal minimum bit error rate (BER) STBC has been developed
in [8]. However, even with the best STBC, a MIMO system with
linear receiver can only attain a diversity gain of (N−M +1) [9]
and is still inferior to one with an ML detector. Due to its potential
to provide higher diversity gain, multi-block transmission scheme
was proposed to improve the system performance. As shown in
Fig. 1-(b), the signals are coded and jointly transmitted through L
independent channel blocks, H1, · · · , HL, so that each symbol
may experience L channel realizations in its transmission. At the
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Fig. 1. (a) Single block transmission, (b) Multiple block trans-
mission

receiver, the received signals from these L independent channel
blocks are jointly detected. For such a multi-block system, with
properly designed STBC and an ML detector, the full diversity
which is equal to MNL can be achieved [10]. However, due
to the extremely high detection complexity (KMNL where K is
the cardinality of the signal constellation), no design of STBC
for such a system has been presented. A linear receiver is
advantageous in this system due to its low computational cost.
The optimal STBC for a linear receiver was proposed in [9] that
minimizes the detection BER. It has also been shown in [9] that
the diversity gain monotonically grows with L. However, the
diversity gain increases only very slowly with L. This implies
that a simple linear receiver is not able to utilize ef ciently the
total degrees of freedoms offered by a multi-block MIMO system.
In this paper, we propose a new scheme in which a linear and

an ML receiver are combined to facilitate the detection of the
coded data in a multi-block MIMO system. The linear equalizer
is employed here to grossly reduce the search space of the ML
detector. As a result, with a moderate increase in the computa-
tional cost, the new system has much improved performance than
one with a linear receiver only. For the proposed new system, the
achievable diversity gain can be shown to be (NL−M +1), i.e.,
it increases linearly with L. In designing the STBC to improve the
system performance, we simplify the problem by separating the
coding of the signals into two stages, designated here as Precoders
I and II, the functions of which correspond to those of the ML and
linear receivers respectively. We show that the optimal Precoder II
is the unitary trace-orthogonal code [8]. As well, a general design
criterion on the optimal Precoder I is presented. Speci cally, the
optimal Precoder I is derived for the case of L = 2 and the
signals are from a 4φ-PSK/4-QAM constellation.
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Fig. 2. Combined precoders/detectors for a multi-block MIMO
system.

II. NEW TRANSMISSION SCHEME AND SYSTEM
PERFORMANCE ANALYSIS

To achieve higher diversity gain with moderate detection
complexity, we propose the full-rate multi-block transmission
scheme with combined precoders and detectors as shown in
Fig. 2. The symbols {s(i), i = 1, 2 · · · , MTL} to be transmitted
are selected from a constellation S of cardinality K and are
rst processed by a linear transformation Precoder I such that

s̄(k) =
∑L

�=1 a�sk(�)ejθ� , where sk(�) are chosen L at a time
without repeat, from the input symbols {s(i)} to form s̄(k), and
a� and θ� are the amplitude and phase to be determined. For
the averaged signal power to remain unchanged,

∑L
�=1 a2

� = L.
Thus, Precoder I maps the information symbol set {s(i)} into
another symbol set {s̄(k), k = 1, 2 · · · , MT} which is then
processed by Precoder II to generate a linear STBC X(s̄) =∑MT

k=1 s̄(k)Ck, where Ck is an M × T matrix to be designed.
The same coded signals X(s̄) are then repeatedly transmitted
at different blocks of time slots through the channels H�, � =
1, · · · , L, each having different independent channel states. At
the receiver, all the repeatedly transmitted coded signals are
collected and jointly processed by a linear equalizer followed
by an ML detector to obtain {ŝ(i)}, the estimate of {s(i)}.
II-A. System Model
Consider the space-time coded signals X(s̄) transmitted

through the �th state of channel, H �. Let the N × T matrix
Y �(s̄) denote the corresponding block of received signals, i.e.,

Y �(s̄) =

√
ρ

M
H �X(s̄) + W �, � = 1, · · · , L

where ρ is the signal to noise ratio (SNR) at each receiver
antenna and W � is the noise matrix each element of which
is assumed to be i.i.d. CN (0, 1) distributed. At the receiver,
we wait until the transmission of all the L blocks of signals
is complete and stack all them into a tall NL × T matrix
such that Y (s̄) = [Y T

1 Y T
2 · · · Y T

L ]T , where [·]T stands for
transpose. Correspondingly, we de ne anNL×M channel matrix
H = [HT

1 HT
2 · · · HT

L ]T , and an NL × T noise matrix
W = [W T

1 W T
2 · · · W T

L ]T , and obtain

Y (s̄) =

√
ρ

M
HX(s̄) + W (1)

The stacking of the received signal block matrices Y T
� to form

Y (s̄) is equivalent to transmitting X(s̄) in parallel as indicated
in Fig. 2. We now vectorize the stacked matrix Y (s̄) in Eq. (1)
and obtain

y = vec(Y ) =

√
ρ

M
(I ⊗ H)F s̄ + w (2)

where F = [vec(C1), vec(C2), · · · , vec(CMT )], “ ⊗ ” stands
for Kronecker product,and w is the vectorized noise. We can now
perform linear equalization followed by an ML detector on the
received signal vector y.

II-B. Design Criteria and Performance Analysis
Let us examine the function of Precoder I. Suppose the

original signals are selected, L at a time without repeat, from
a constellation S of cardinality K, then for the signal set S̄
generated by linear transformation, there are KL elements. One
element s̄k corresponds uniquely to one group of ordered original
signals, {sk1, · · · , skL}. Therefore, at the receiver end of the
system, once s̄k is correctly detected, the corresponding L
original symbols are also correctly known. Hence, to examine
the system performance, it is suf cient to consider the error
probability in detecting s̄k.
From Fig. 2, an ML detector is used to make a decision for

ˆ̄s. The pair-wise error probability (PEP) for this is given by,

P (s̄k → s̄�) = Q

(
dk�

2

√
γ

)
(3)

where Q(z) = 1√
2π

∫ ∞
z

e−x2/2dx, d2
k� = ‖s̄k − s̄�‖2, and γ

is the SNR after linear equalization. Eq. (3) indicates that PEP
depends on the two parameters dk� and γ. The distance dk� is
decided by how {s̄k} are generated, i.e., it depends only on
Precoder I. On the other hand, γ depends on Precoder II, ρ,
the channel states, and the linear equalizer, and is independent
of Precoder I. Therefore, dk� will affect the coding gain, and γ
will affect both the coding gain and diversity gain of the system.
Due to the independence of Precoders I and II, their design will
be considered separately.
First we consider the design of Precoder II. Here, dk� can be

treated as a constant since it is xed by Precoder 1. Thus, the
design problem can be formulated as

min
F

: EQ

(
dk�

2

√
γ

)
(4a)

s.t. : tr
(
F HF

)
= MT (4b)

where “E” denotes the expectation over the random channels,
and the constraint in Eq. (4b) is such that the code matrix F
maintains the power of the input signals at a constant. Solving
Eq. (4), and analyzing the minimum error probability, we obtain
the following result,
Theorem 1: For the proposed multi-block transmission sys-

tem equipped with combined precoder/detectors, the optimal
Precoder II is of unitary trace-orthogonal [8] structure having
achievable diversity gain of NL − M + 1.

Proof: The optimization problem in Eq. (4) can be solved
following similar derivations in [8] resulting in the optimal code
matrix F being unitary trace-orthogonal. Applying this optimum
code on the system described in Eq. (1), analysis shows that the
diversity gain is NL − M + 1. �
Remark 1: Theorem 1 implies that the system diversity gain

does not depend on Precoder I.
We now consider the optimum design of Precoder I. To this

end, we need to maximize the minimum distance between any
two distinct points in the set S̄ since the minimum distance
dominates the system performance. The design problem can thus
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be formulated as

max
{a�,θ�,�=1,··· ,L}

: min{d2
ij}, i, j ∈ KL, i �= j (5a)

s.t. :

L∑
�=1

a� = L (5b)

The optimal a� and θ� depend on the signal constellation and L,
and there is no general solution. An example in solving Eq. (5)
to arrive at an optimum Precoder I design for speci c cases is
given in Section III.

II-C. Detection Complexity
The detection complexity of the linear equalizer employed

in the proposed system is of order O(M3) [8], which is the
same as that for a single block system with a linear receiver.
The additional complexity comes from the computational cost
involved with the ML detector, i.e., O(KL), which is independent
of M and N . Hence, for a system with a large number of
transmitter/receiver antennas, multi-block transmission with a low
value of L applied with the combined precoder/detector is an
attractive alternative to improve the system performance.

III. DESIGN EXAMPLE
The general design criterion for Precoder I is provided in

Eq. (5). The optimal Precoder I depends on the structure of
the signal constellation and the value of L. We now provide
an example in the design of the optimal Precoder for a 4φ-PSK
constellation and for the conjoining of L = 2 blocks of time slots.
Note that for an ML detector, the optimal Precoder I designed
for a 4φ-PSK constellation is also optimum for 4-QAM, since
the latter is merely a rotated version of the former.
For L = 2, let {si} and {s̄i} be the symbol elements in the

signal set S and S̄ respectively. Precoder I maps the S into S̄ by
the linear transformation: s̄k = a1sk1e

jθ1 + a2sk2e
jθ2 , where

a2
1 + a2

2 = 2 and sk1 and sk2 are 4φ-PSK symbols from S
selected to form s̄k. Without loss of generality, we can assume
θ1 = 0, θ2 = θ and a2 ≥ a1 > 0 ⇒ a2 ≥ 1. Thus, there
are three design variables a1, a2, θ to maximize the minimum
distance between any two distinct points in S̄ .
The design problem hinges on the distance, i.e., the difference

between two points {s̄j} and {s̄k} in the set S̄ which can be
written as

s̄j − s̄k = a1(sj1 − sk1) + a2e
jθ(sj2 − sk2) (6)

There are two terms in Eq. (6), each formed by the difference of
two symbols from a 4φ-PSK constellation. Now, (sj�−sk�), � =
1, 2 is the difference between signals chosen from {±1,±j}
forming a set P = {0,±2, (±1 ± j),±2j} from which the rst
term in Eq. (6) is constructed after scaling by a1. This set of
symbols is plotted as full circular dots in Fig. 3. Similarly, the
second term in Eq. (6) is selected from the set Q (represented by
hollow circular dots in Fig. 3) which is the set P scaled by a2

and rotated by an angle θ. Sets P and Q have one common point
in the origin. The objective now is to maxa1,a2,θ : min{d2

jk},
s.t.: a2 > a1 > 0, a2

1 + a2
2 = 2, where d2

jk = ‖s̄j − s̄k‖2

for j �= k. The optimal solution is provided by the following
theorem:
Theorem 2: For signals of a 4φ-PSK or a 4-QAM constel-

lation, when two (L = 2) signal blocks are combined for
transmission, the optimal parameters for Precoder I are a1 =√

1 − 1√
3
, a2 =

√
1 + 1√

3
, and θ = π

12
. The maximized

minimum distance is 0.8453.
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Fig. 3. Plotting of s̄i − s̄j

Proof: From Fig. 3, it is clear that by the symmetry of the
two sets P and Q, we can limit θ to the range [0, π/4]. We
rst obtain the minimum distance and then maximize it. From
Eq. (6), the distance djk is the norm of the sum of two elements,
one from each of the two sets P and Q. Since the elements of
both sets are symmetric about the origin, the minimum distance
equals the distance between two neighboring points, one from
each of the two sets. From Fig. 3, we observe that due to
symmetry and a1 < a2, we only have to consider the distances
between two groups of elements: {p1 =

√
2a1e

jπ/4, p2 =
j2a1, p3 =

√
2a1e

j3π/4}; {q0 = 0, q2 = j2a2e
−jθ, q3 =√

2a2e
j(3π/4−θ)}. There are thus 9 distances that should be

considered: {d10, d12, d13; d20, d22, d23; d30, d32, d33}where dij

denotes the distance between the two points (pi, qj). From Fig. 3,
it is obvious that d10 = d30 < d20; d33 < d13; d22 < d32.
Thus, there are only 5 distances that can be the minimum,
i.e., d10, d12, d22, d23 and d33. These 5 distances can be easily
calculated giving:

d2
10 = 2a2

1 (7a)
d2
12 = 4 + 2a2

2 − 4a1a2(cos θ − sin θ) (7b)
d2
22 = 8(1 − a1a2 cos θ) (7c)

d2
23 = 4 + 2a2

1 − 4a1a2(cos θ + sin θ) (7d)
d2
33 = 4(1 − a1a2 cos θ) (7e)

From Eq. (7), clearly d2
33 ≤ d2

22 and d2
23 < d2

12. Therefore, there
are three possible minimum distances: d10, d23 and d33. Using
the constraint a2

1 + a2
2 = 2, we can compare them such that:

d2
23 − d2

33 = 2a1(a1 − 2a2 sin θ) (8a)
d2
10 − d2

33 = 2a2(2a1 cos θ − a2) (8b)

d2
23 − d2

10 = 4(1 −
√

2a1a2 cos(
π

4
− θ)) (8c)

Those quantities in Eq. (8) can be either positive or negative in
the feasible range of the variables, which means that any one d2

10,
d2
23, or d2

33 can be the minimum. Closer examination of Eqs. (7a),
(7d) and (7e) reveals that increasing one distance will cause the
decrease in the others. Therefore, to maximize the minimum, we
should make the possible minimums all equal. If such a solution
exists, then the quantities in Eq. (8) must be equal to zero. Now,
we set Eqs. (8a) and (8b) to be zero (and this implies Eq. (8c)
equals zero) and obtain sin θ = a1

2a2
; cos θ = a2

2a1
. Squaring

both sides and adding, we have a2
1

4a2
2

+
a2
2

4a2
1

= 1. Combined with
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the condition that a2
1 + a2

2 = 2, we arrive at a2
1 = 1 − 1√

3
and

a2
2 = 1 + 1√

3
, and the optimal angle is θ = tan−1 a2

1/a2
2 =

tan−1
√

3−1√
3+1

= π
12
. The minimum distance equals (2 − 2√

3
) =

0.8453. �

IV. SIMULATION

In this section, we examine the performance of the multi-block
transmission scheme with combined detectors by simulation. For
the numerical experiments, we employ the optimal signal design
provided in Section III in a MIMO system with M = N = T =
L = 2. The original signals are randomly selected from a 4-QAM
constellation, and the transmission (full) data rate is 4 bits per
channel use (pcu). The signals are rst processed by the optimal
Precoder I provided in Section III, and then by the unitary trace-
orthogonal precoder. The received signals pass through a linear
zero-forcing (ZF) equalizer followed by an ML detector. The
resulting symbol error rate (SER) verses SNR/symbol is plotted as
the dotted “+” line in Fig. 4. For comparison, we also provide the
SER performances of the following three transmission schemes:
1) Single block transmission. The signals are encoded by the
unitary trace-orthogonal code [8] and received by a linear
ZF equalizer followed by a symbol-by-symbol detector. The
SER line is blue dotted with circles.

2) Multi-block transmission scheme over L = 2 blocks. The
code employed here is the optimal multi-block STBC for a
linear receiver provided in [9]. The received signals are also
processed by a linear ZF receiver. The SER line is green
solid in Fig. 4.

3) We perform the simulation for the same multi-block trans-
mission with combined detector using different Precoder I.
Here, in generating {s̄}, we only shifted the angle, i.e.,
s̄ = si + sje

jθ , with θ = π/8. The resulting SER line is
red solid with stars.

On Fig. 4, we have the following observations:
• The performance of the proposed scheme is much superior
to those two with linear receivers only. The negative slope
of the SER curve is much steeper than those for linear
receivers, indicating the higher diversity. The signi cantly
improved performance is obtained with marginally higher
computational complexity (42 = 16).

• Now we compare the two SER lines for the same multi-
block transmission with different Precoder I. From the
analysis in Section II, we know that the design of Precoder I
will affect the coding gain but will have no effect on the
system diversity. This is indeed the case in Fig. 4, where
both lines have the same slope at high SNR, indicating the
same diversity gain. The one with the optimal Precoder I
has superior performance due to the optimal coding gain.

V. CONCLUSION AND DISCUSSION
In this paper, we have proposed a combined linear and ML

detector applied to a multi-block MIMO communication system.
This scheme takes advantage of both the simplicity of a linear
receiver, and the potential of high quality transmission of a multi-
block strategy. We have shown that the diversity with this system
is NL − M + 1, and it is achieved with a moderate increase in
the complexity of detection.
The idea of combining a linear receiver and an ML receiver

may be realized in various ways. The useful application to a
multi-block MIMO system relies on the successful utilization of
the greater degrees of freedom embedded in a multi-block system
compared to that of a traditional single block transmission. In
spite of the signi cant improvement obtained, the transmission
scheme presented in this paper may be one of several ways
to combine linear and ML receivers, together with multi-block
transmission strategy.
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