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Abstract—Communications over multiple-input multiple-
output (MIMO) channels with carrier offsets is an important
practical and theoretical problem. Double-differential coding
is a technique, which allows the receiver to decode the data
without any channel or carrier offset knowledge. We propose
a double-differential (DD) coding scheme which is applicable to
any square orthogonal space-time block codes (OSTBC) using
M -PSK constellation. The main advantages of the proposed DD
coding scheme are: 1) The previously proposed DD codes are
applicable only to the specific class of space-time block codes
which follow the diagonal unitary group property, whereas our
DD coding is applicable to any square OSTBC. 2) We propose a
suboptimal decoder which preserves the linear decoding property
of the OSTBC. We derive an upper bound of the pairwise error
probability (PEP) of the proposed double-differential orthogonal
space-time block codes (DDOSTBCs). The proposed DDOSTBC
is able to achieve better performance than the similar rate
existing DD coding scheme. In addition, the proposed DDOSTBC
outperforms the conventional training based system.
Keywords: Double-Differential Modulation, Orthogonal Space-

Time Block Codes, MIMO System, Carrier Offset, Differential
Coding.

I. INTRODUCTION
Space-Time block codes (STBC) are one of the the main

coding techniques for multiple-input multiple-output (MIMO)
systems, which enables them to exploit full diversity with-
out any channel knowledge at the transmitter. The decoding
complexity can be reduced by using OSTBC. Generally, it is
assumed that the receiver can acquire the knowledge about
the channel by using training data. However, this training
based technique is only useful for channels which remain
constant for several symbol durations. The receiver may use
training data for the estimation of the channel coefficients at
the cost of reduced data rate. However, training-based methods
do not work well when the channel remains constant for
relatively small number of channel usages. Differential coding
is proposed in the literature [1], [2], [3], [4] to avoid the need
of channel estimation at the receiver end.
Another challenge is the presence of the carrier offsets,

which exists because of the movement of the receiver, trans-
mitter, or scatterers, and the mismatch between the transmit
and receive oscillators. The differential systems in [1], [2],
[3], [4] fail to perform well in the presence of carrier offsets,
because the carrier offsets make the flat fading channel behave
as a time-varying channel. Hence, the channel does not remain
constant over two consecutive STBC block transmission time-
intervals, which is a basic assumption for differential systems.
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Accurate estimation of the carrier offsets is difficult and needs
intensive training data causing large delays in the decision
process. Small residual carrier offset error can degrade the
performance of the receiver substantially [5]. DD coding [6],
[7] is a key technique which could be used to avoid the need
of carrier offset and channel estimation. DD coding reflects
its utility specially for channels which remain constant over a
small number of block (symbol) durations and are perturbed
with carrier offsets. A trained decoder [8] will reduce the
data rate. DD coding enables the receiver to make decisions
based on the three consecutively received data blocks/matrices
without any carrier offset or channel knowledge. Hence, it is
efficient in terms of data rate. DD coding for MIMO system
was proposed in [9], however, it can only be applied to a
specific class of OSTBC, which belong to the diagonal unitary
group.
In this paper, our main contributions are as follows: 1) We

propose a double-differential coding, which is applicable to
any square OSTBC with M -PSK constellations. 2) A low
complexity linear decoder of the DDOSTBC is obtained. 3)
An upper bound for the PEP of the DDOSTBC is also derived.
The rest of the paper is organized as follows: In Section II

DD encoding for OSTBC is explained while in Section III
the channel model is discussed. Decoding of DDOSTBC is
presented in Section IV. Section V performs the theoretical
analysis of the performance of the DDOSTBC scheme. Simu-
lation results and comparisons are discussed in Section VI.
Some conclusions are drawn in Section VII. The article
contains one appendix.

II. DOUBLE-DIFFERENTIAL ENCODING
Let Sk, k ≥ 2, be an nt×nt OSTBC matrix obtained from

sk = [s1, s2, . . . , sns
]T , ns ≤ nt, si is an M -PSK symbol.

The first order differential matrix F k of size nt × nt can be
obtained as

F k = F k−1Sk, k ≥ 2, (1)

with F 1 ∈ C
nt×nt as the initialization matrix. Next, the

second order differential matrix Dk can be obtained from F k

as

Dk = Dk−1F k, k ≥ 1, (2)

with D0 ∈ C
nt×nt as initialization matrix. For p ≥ 2,

the second order differential matrix Dp is obtained from the
current OSTBC matrix Sp from:

Dp = Dp−2F
2
p−1Sp = D0F 1· . . . · F p−2F

2
p−1Sp. (3)
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Lemma 1: The double-differential encoding of (3) can be
used iff Sp is a full-rank square matrix.
Proof: It can be seen from [10, Eqs. (1.7.4) and (1.7.5)]

that the product of (3) follows a diminishing rank property
and may results into an all zero matrix, if Sp, for all p, is
not a full-rank and square matrix. It can be further observed
from [10, Eq. (1.7.5)] that the rank of Dp is equal to the rank
of D0 if Sp, for all p, is a full-rank square matrix.
Lemma 1 indicates an important result about the choice of

initialization matrices D0 and F 1. It is apparent that from the
full diversity point of view [8] D0 and F 1 must be full-rank
matrices. Lemma 1 also indirectly puts an restriction on the
signal alphabet which can be used for DD encoding since the
signal alphabet cannot contain the origin.
It can be seen from (1), (2), (3), and Lemma 1 that the

proposed DD encoding is applicable to any full-rank nt × nt

OSTBC matrix, which can transmit ns (ns ≤ nt) M -PSK
symbols. Whereas, the DD encoding proposed in [9] can only
be applied to the diagonal OSTBC, which can transmit only
one M -PSK symbol by an nt × nt diagonal matrix. Hence,
the proposed DD encoding is able to provide better data rate
than [9].

III. CHANNEL MODEL
Consider a MIMO channel with nt transmit and nr receive

antennas. Let hm,n be the channel gain between m-th receive
and n-th transmit antenna and Dk be the k-th transmitted
nt × nt DD encoded matrix. Let ωm ∈ [−π, π > be the
random carrier offset between all transmit antennas and them-
th receive antenna, which is assumed to be independent of time
k and constant over the transmission period of at least three
DD encoded matricesDk. The received data ym,k ∈ C

1×nt at
the m-th receiver antenna corresponding to Dk, k ≥ 0, is [8,
Eq. (9.7.1)]

ym,k = exp (jωmntk)hmDkΩm + qm,k, (4)

where Ωm ∈ C
nt×nt is the diagonal matrix

Ωm=diag[1, exp {jωm} , . . . , exp {jωm(nt − 1)}], hm =
[hm,1, . . . , hm,nt

] is an 1 × nt row vector consisting
of the channel coefficients between the transmit antennas
and the m-th receive antenna, qm,k ∈ C

1×nt contains zero
mean additive white complex-valued Gaussian noise (AWGN),
whose elements are i.i.d. Gaussian random variables with zero
mean and variance σ2. The channelH = [hT1 ,hT2 , . . . ,hTnr

]T

is assumed to be constant over the transmission period of at
least three DD encoded matrices.

IV. DECODING OF DDOSTBC
It can be seen from (4) that if ωm,hm, and Dk are known

for all k and m, ym,k has the following probability density
function (p.d.f.):

f
(
ym,k |ωm,hm,Dk) =

1

πntdet (Λ)

× exp
(
−

[
ym,k − exp (jωmntk)hmDkΩm

]∗
Λ−1

×
[
ym,k − exp (jωmntk)hmDkΩm

]T )
, (5)

where Λ = E
(
qTm,kq∗m,k

)
is the covariance matrix of zero

mean noise qm,k. It is assumed that qm,k is AWGN with Λ =
σ2Int

. Let ym =
[
ym,k−2 ym,k−1 ym,k

]
∈ C

1×3nt contains
three consecutively received data vectors at the receive antenna
m. When hm, ωm, Dk−2, F k−1, and Sk are known,

f (y|ωm,hm,Dk−2,F k−1,Sk) =
1

π3nt (σ2)
3nt

× exp

(
−

1

σ2

k∑
l=k−2

∥∥ym,l − exp (jωmntl)hmDlΩm

∥∥2

)
.

(6)

In order to find a maximum likelihood (ML) estimate of the
unknown data Sk, the joint probability distribution function
(p.d.f.) in (6) is first maximized with respect to (w.r.t.) all un-
known quantities hm, ωm,Dk−2, and F k−1, and subsequently
over Sk, which results into minimization of the following
metric:

Γm,k =

k∑
l=k−2

∥∥ym,l − exp (jωmntl)hmDlΩm

∥∥2
, k ≥ 2. (7)

Minimization of (7) w.r.t. hm, ωm, Dk−2, and F k−1, and
Sk is very complicated, therefore, we focus on a suboptimal
decoder which makes the decision independent of channel and
carrier offset knowledge.

A. Suboptimal Decoder of Double-Differential OSTBC

Lemma 2: LetXk is a square OSTBC matrix. Then X̃k �

ΩH
mXkΩm, is also a square OSTBC matrix.
Proof: It can be verified using [8, Eqs. (7.1.1) and (7.4.4)]

that X̃k is square OSTBC matrix.
To simplify the decision process, we consider a degenerated

decision metric from (7) as follows:

Dm,k =

k−1∑
l=k−2

∥∥ym,l − exp (jωmntl)hmDlΩm

∥∥2
, k ≥ 2.

(8)

By means of Lemma 2, the unitary property of the OSTBC
matrix with M -PSK constellation [8], and the results given
in [11] for matrix derivatives, (8) is minimized w.r.t. gm,k =
exp (jωmnt(k − 2))hmDk−2Ωm as

ĝm =
1

2

(
E∗ωm

ym,k−1F̃
H

k−1 + ym,k−2

)
, (9)

where Eωm
= exp (jωmnt) and F̃ k−1 = ΩH

mF k−1Ωm. By
substituting (9) into (8) and using the unitary property of
OSTBC [8], (8) reduces into

Dm,k =
∥∥∥ym,k−1 − Eωm

ym,k−2F̃ k−1

∥∥∥2

, k ≥ 2. (10)

It can be seen from (10) that if F̃ k−1 is unknown, it is not
possible to find the estimate of Eωm

.
Lemma 3: If F k−1 = Int

, the estimator of Eωm
is given

by

Êωm,k−1 = exp
(
j arg

{
ym,k−1y

H
m,k−2

})
. (11)
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Proof: If F k−1 = Int
, then F̃ k−1 = Int

and (10) reduces
into the following form:

Dm,k =
∥∥ym,k−1 − Eωm

ym,k−2

∥∥2
, k ≥ 2. (12)

Equation (12) can be minimized to find an estimate of the
carrier offset and results into (11).
However, we cannot take the liberty of assuming F k−1

as the identity matrix as we are using OSTBC matrices.
Nevertheless, we may assume that the initialization matrix F 1

is equal to the identity matrix. Then, the estimate of Eωm
can

be found from (11) at k = 2, such that Êωm,1 can be used in
the place of Eωm

in the further analysis.
Remark: For double-differential modulation, it can be

assumed that the receiver has perfect knowledge about the
initialization matrix F 1. The receiver can reconstruct the
subsequent F̂ k−1, for k > 2, from the estimated data and (1).
However, F̂ k−1, for k > 2, are noisy versions of the original
F k−1, for k > 2. Hence, the estimates of Eωm

at k > 2, based
on F̂ k−1, for k > 2, will be worse than Êωm,1. Hence, Êωm,1

should be used for all ks over which the carrier offset remains
constant as the estimate of carrier offset.
From (1), (2), and (4), the received vector at the k-th time

instant and of the m-th receive antenna can be written in the
terms of Eωm

, gm,k, and F k−1 as

ym,k = E2
ωm

gmΩH
mF 2

k−1SkΩm + qm,k. (13)

Hence, we can minimize the following decision metric to find
the estimate of Sk, k ≥ 2:

Ŝk = arg min
Sk∈Ξ

∥∥∥ym,k − Ê2
ωm,1ĝmΩ̂

H

mF̂
2

k−1Ω̂mS̃k

∥∥∥2

, (14)

where Ξ is the set of all OSTBC matrices consisting
of symbols from the M -PSK constellation, Ω̂m is ob-
tained from Êωm,1, and S̃k = Ω̂

H

mSkΩ̂m. Let h̄m =

Ê2
ωm,1ĝmΩ̂

H

mF̂
2

k−1Ω̂m, then (14) can be written as

Ŝk = arg min
Sk∈Ξ

∥∥∥ym,k − h̄mS̃k

∥∥∥2

. (15)

It can be seen from Lemma 2 that S̃k is a square
OSTBC matrix. Hence, S̃k can be written as S̃k =∑ns

n=1 (s̄nAn + jšnBn) [8, Eq. (7.1.1)], where s̄n and šn are
the real and the imaginary part, respectively, of the complex
symbol sn, and An and Bn are fixed (in general complex-
valued) code matrices of size nt × nt, which satisfy the
properties given in [8, Eq. (7.4.4)]. Expanding the right hand
side of (15) and using the orthogonal property S̃kS̃

H

k =∑ns

n=1 |sn|
2Int

, it can be shown that the decoding of Sk can
be done linearly. Decoding of (14) can be generalized to nr

receive antennas as

Ŝk =arg min
Sk∈Ξ

nr∑
m=1

∥∥∥ym,k−Ê2
ωm,1ĝmΩ̂

H

mF̂
2

k−1SkΩ̂m

∥∥∥2

. (16)

V. PERFORMANCE ANALYSIS OF DDOSTBC
In this section, we are analyzing the pairwise error proba-

bility (PEP) of DDOSTBC over flat fading MIMO channels
with carrier offset. From (16), the probability of detecting Sk

in place of S0
k where Sk �= S0

k can be written as

Pr
{
S0

k → Sk

}
= Pr

{
nr∑

m=1

∥∥∥y0
m,k − Ê2

ωm,1ĝmΩ̂
H

mF̂
2

k−1SkΩ̂m

∥∥∥2

<

nr∑
m=1

∥∥∥y0
m,k − Ê2

ωm,1ĝmΩ̂
H

mF̂
2

k−1S
0
kΩ̂m

∥∥∥2
}

, (17)

where y0
m,k = exp (jωmntk)hmDk−2F

2
k−1S

0
kΩm + qm,k

and F̂ k−1 is the estimate of F k−1. After many ma-
nipulations and using [8, Theorem 4.2], the Chernoff
bound [12, Eq. (2.1.172)], and Fischer’s matrix inequality [10,
Eq. (11.8.1)], it can be shown be that

Pr
{
S0

k → Sk

}

≤ exp

⎛
⎜⎝−

{∑nr

m=1

(
λmin (X m,k)

∥∥vm,kS̄
∥∥2

)}2

6σ2
∑nr

m=1

∥∥vm,kS̄
∥∥2

⎞
⎟⎠ , (18)

where S̄ = S0
k − Sk, W m,k = E2

ωm
ΩH

mF 2
k−1,

vm,k =
Ê2

ωm,1

2
[Eωm

Ê∗ωm,1gmΩH
mF k−1ΩmΩ̂

H

mF̂
H

k−1Ω̂m

+ gm]Ω̂
H

mF̂
2

k−1,

X m,k = ΩH
m

(
S0

k

)H
W m,k

(
V H

m,k

)−1

Ω̂m

+ Ω̂
H

mV −1
m,kWH

m,kS0
kΩm,

V m,k =
Ê2

ωm,1

2
S̄[Eωm

Ê∗ωm,1Ω
H
mF k−1ΩmΩ̂

H

mF̂
H

k−1Ω̂m

+ Int
]Ω̂
H

mF̂
2

k−1, (19)

and λmin (X m,k) is the minimum eigenvalue of X m,k.
Theorem 1: The average pairwise error probability of

DDOSTBC can be bounded as

EH

[
Pr

{
S0

k → Sk

}]
≤

∣∣∣(S0
k − Sk

)
Πk

(
S0

k − Sk

)H∣∣∣−nr

×

(
γ2

12σ2

)−ntnr

, (20)

where Πk = λ2
min (X k) Int

.
Proof: See Appendix I for the proof of Theorem 1.

From (20), it follows that the proposed DDOSTBC achieves
full diversity (ntnr).

VI. SIMULATION RESULTS
The simulations are performed with nt = 2, nr = 1, uncor-

related complex Gaussian channel and unit variance complex
AWGN noise. The channel coefficients are assumed to be
constant over five transmitted blocks of DDOSTBC. The total
power transmitted by all antennas in one time-interval is kept
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unity. D0 = I2 and F 1 = I2, and it is assumed that receiver
perfectly knows F 1. The simulation results are obtained from
105 channel realizations. The proposed DDOSTBC are applied
over the Alamouti STBC [13] with QPSK constellation. The
carrier offset is assumed to be uniformly distributed over
[−π, π>. The DD code of [9] utilizes diagonal OSTBC
matrices, which can transmit only one M -level symbol per
OSTBC block, hence, the DDOSTBC of [9] provides low data
rates. Therefore, for a fair comparison at the same spectral
efficiency, the simulations are performed for (16:1,7) DDSTBC
of [9] which transmits one 16-PSK symbol by a 2 × 2

diagonal matrix [9, Eq. (45)]
[
diag

{
ej2π/16, (ej2π/16)7

}]i,
where i = 0, 1, . . . , 15. It can be seen from Fig. 1 that our
proposed DDOSTBC outperforms the existing DDOSTBC [9]
by a substantial margin, for example at SER=10−3, the gain
is approximately 4 dB. We have also plotted the performance
of a trained decoder [8] using QPSK constellation, which
utilizes the training sequence transmitted in the starting two
blocks for the estimation of carrier offset and channel gains.
These estimates are used to recover the unknown data in the
subsequent time intervals. It can be seen from Fig. 1 that the
proposed DDOSTBC also outperforms the trained receiver [8].

VII. CONCLUSIONS
We have proposed double-differential coding for square

orthogonal space-time block codes. The proposed double-
differential scheme is able to decode the space-time data
without knowing the carrier offsets or channel coefficients. The
proposed double-differential code exhibits performance gain
as compared to the previously proposed double-differential
space-time block codes. In addition, it outperforms the pre-
viously proposed trained decoder.

APPENDIX I
PROOF OF THEOREM 1

If all links are perturbed by the same carrier offset, i.e.,
ωm = ω, then (18) reduces into:

Pr
{
S0

k → Sk

}
≤ exp

(
−

λ2
min (X k)

6σ2

nr∑
m=1

∥∥v′m,kS̄
∥∥2

)
, (21)

where X k = X m,k|ωm=ω and v′m,k = vm,k|ωm=ω. We can
average (21) over all Rayleigh uncorrelated channels to find
an average PEP upper bound as

EH

[
Pr

{
S0

k → Sk

}]
≤

nr∏
m=1

∣∣∣∣Int
+
(
ΘS0

k

− ΘSk

)
Σk

(
ΘS0

k

− ΘSk

)H∣∣∣∣
−1

, (22)

where Σk =
λ2

min
(X k)γ2

6σ2 Int
, E

[
hTmh∗m

]
= γ2Int

, ΘS0

k

=

ΦkS0
k, ΘSk

= ΦkSk, and

Φk =
Ê2

ω,1

2

[
EωÊ

∗
ω,1 exp (jωnt(k − 2))Dk−2F k−1ΩΩ̂

H

×F̂
H

k−1Ω̂ + exp (jωnt(k − 2))Dk−2Ω
]
Ω̂
H

F̂
2

k−1. (23)

Let us assume that all the links between the transmit and
receive antennas are perturbed with the worst carrier offset,

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

SNR [dB]

S
E

R

DDOSTBC of [9]
Trained Decoder of [8]
Proposed DDOSTBC

Fig. 1. Performance of the proposed DDOSTBC as compared to the existing
DDOSTBC [9] and trained decoder [8].
i.e., ω = ±π. From (11), it can be seen that the error in
the estimate of Eω = Eωm

|ωm=ω is uniformly distributed
between exp (jπ) and exp (−jπ) on the complex unit circle,
therefore, the worst estimate will be Êω,1 = Êωm,1|ωm=ω =
exp (±jπnt ± jπ/2) = exp (±jπ/2). Substituting Eω =
exp (jπnt), Êω,1 = exp (jπ/2), and F k−1 = F̂ k−1 = Int

in (22) and using the upper bound given in [8, Eq. (4.2.18)],
we can obtain the relation given in (20).
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