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Abstract — Parallel Factor Analysis (PARAFAC) is a branch of
multi-way signal processing that has received increased atten-
tion recently. This is due to the large class of applications as well
as the milestone identifiability results demonstrating the supe-
riority to matrix (two-way) analysis approaches. A significant
amount of research was dedicated to iterative methods to esti-
mate the factors from noisy data. In many situations these re-
quire many iterations and are not guaranteed to converge to the
global optimum. Therefore, suboptimal closed-form solutions
were proposed as initializations.

In this contribution we derive a closed-form solution to
completely replace the iterative approach by transforming
PARAFAC into several joint diagonalization problems.
Thereby, we obtain several estimates for each of the factors and
present a new “best matching” scheme to select the best
estimate for each factor.

In contrast to the techniques known from the literature, our
closed-form solution can efficiently exploit symmetric as well as
Hermitian symmetric models and solve the underdetermined
case, if there are at least two modes that are non-degenerate
and full rank. This closed-form solution achieves approximately
the same performance as previously proposed iterative
solutions and even outperforms them in critical scenarios.

Index Terms— Multidimensional signal processing, Parameter
estimation, Array signal processing, Direction of arrival estimation

1. INTRODUCTION
In this contribution we focus on the three-way PARAFAC model,
which is also known as trilinear model or canonical decomposition.
It has originated as data analysis tool in psychometrics (the underly-
ing idea first appeared in [2]) and was later adopted in various fields,
e.g., spectroscopy, pattern recognition, explorative data analysis, but
also several fields of signal processing [12, 8]. The simplicity and
versatility of the model as well as the milestone results on its iden-
tifiability [7] render it an attractive approach to solve a large variety
of tasks in different fields. The wide range of applications includes
blind equalization [12], blind source separation [14], RADAR [8],
psychometrics [2] any many more.

For this reason, a significant amount of research was dedicated
to findind fast and yet robust methods to compute the factors from
noisy data. The estimates are often obtained via iterative techniques
such as alternating least squares (ALS) [1] that may require many
iterations and are not guaranteed to converge to the global optimum
[9]. Therefore, approximate closed-form solutions were proposed as
initializations [3, 11].

In this contribution we introduce a new closed-form solution1

1The use of the term “closed-form” in the literature is conflicting. We
consider simultaneous matrix diagonalization to be closed-form and therefore
term our approach closed-form solution.

to find the factors of the PARAFAC model that completely replaces
the iterative approach. We demonstrate how PARAFAC can be trans-
formed into the well-studied task of jointly diagonalizing several sets
of matrices, for which numerous efficient solutions exist (e.g., [6]).
Due to the structure of the problem we find several different esti-
mates for each of the factors. In a second step we present a new
“best matching” scheme to select the best estimate for each factor,
which enhances the performance even further.

2. TENSOR AND MATRIX NOTATION

In order to facilitate the distinction between scalars, matrices, and
tensors, the following representations are used: Scalars are denoted
as italic letters (a, b, . . . , A, B, . . . , α, β, . . .), vectors as lower-case
bold-face letters (a, b, . . .), matrices as bold-face capitals
(A, B, . . .), and tensors are written as bold-face calligraphic letters
(A, B, . . .).We use the superscripts T,H ,−1 ,+ for transposition,
Hermitian transposition, matrix inversion, and the Moore-Penrose
pseudo inverse of matrices and ∗ for complex conjugation,
respectively. The transpose (Hermitian transpose) of an inverse may
be written as −T (−H). Moreover the Kronecker product between
two matrices A and B is denoted by A ⊗ B and the Khatri-Rao
(column-wise Kronecker) product between A and B by A � B.
Also, the notation diag {A(k, :)} represents a diagonal matrix that
is constructed from the elements in the k-th row of the matrix A.

The tensor operations we use are consistent with [5]: The
higher-order norm of a tensor A is symbolized by ||A||H and
defined as the square-root of the sum of the squared magnitude of
all elements in A. The n-space of a tensor is defined as the space
spanned by the n-mode vectors, which are the vectors obtained by
varying the n-th index within its range (1, 2, . . . , In) and keeping
all the other indices fixed. Moreover, the notation [A]in=k

represents the tensor obtained by keeping the n-th index fixed to the
value k and varying all other indices in their corresponding ranges.
A matrix unfolding of the tensor A along the n-th mode is
symbolized by [A](n) ∈ C

In×In+1·...·IN ·I1·...···In−1 and contains
all the n-mode vectors of the tensor A. The order of the columns is
chosen in accordance with [5].

The n-mode product: The product of a tensor
A ∈ C

I1×I2×...×IN and a matrix U ∈ C
Jn×In along the n-th

mode is denoted as A ×n U ∈ C
I1×I2...×Jn...×IN . It is obtained

by multiplying all n-mode vectors of A from the left-hand side by
the matrix U .

To simplify the notation, we additionally define an identity ten-
sor Id =

Pd
n=1 en,d ◦ en,d ◦ en,d ∈ R

d×d×d, where en,N repre-
sents the n-th column of a N × N identity matrix (also termed the
n-th pinning vector of size N ).
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3. DATA MODEL AND PROBLEM STATEMENT

The three-way PARAFAC model for a third order tensor X 0 ∈
C

M1×M2×M3 can be expressed in the following fashion

X0 =
dX

n=1

an ◦ bn ◦ cn, where (1)

an ∈ C
M1 , bn ∈ C

M2 , and cn ∈ C
M3 . In other words, we decom-

pose the tensor into a sum of d rank-1 tensors, where d is the rank of
the tensor.2 Under mild conditions, this decomposition is unique up
to a scaling of each of the vectors an, bn, and cn and a permutation
of the terms in the sum, see [7, 12] for details.

Let us rewrite equation (1) by introducing the matrices A ∈
C

M1×d, B ∈ C
M2×d, and C ∈ C

M3×d such that the n-th column
of A is equal to an, the n-th column of B is bn, and the n-th column
of C is cn, where n = 1, 2, . . . , d. We can then write

[X 0](3) = C · (A � B)T or alternatively (2)

[X 0]i3=k = A · diag {C(k, :)} · BT
(3)

The introduction of the identity tensor (cf. Section 2) facilitates an
alternative notation of the PARAFAC model given by

X 0 = Id ×1 A ×2 B ×3 C . (4)

In practice, the data is usually contaminated by additive noise. We
therefore extend (1) by incorporating a noise component in the fol-
lowing fashion: X = X 0 + N , where N is the noise tensor which
has the same size as X 0. In the simulations we assume that N con-
tains mutually independent zero mean circularly symmetric complex
Gaussian random variables with variance equal to σ2.

Consequently, the problem that we will solve can be formulated
in the following manner: Given a noisy tensor X and the
model order d find a PARAFAC model A, B, C , such that
||X 0 − (Id ×1 A ×2 B ×3 C)||H is minimized.

4. CLOSED-FORM SOLUTION
4.1. Transformation into joint diagonalization problem
The closed-form solution is based on the higher-order SVD
(HOSVD) decomposition of X which is given by

X = S ×1 U1 ×2 U2 ×3 U3, (5)

where S ∈ C
M1×M2×M3 , Ur ∈ C

Mr×Mr , r = 1, 2, 3 and which
can easily be obtained from the singular value decomposition of
the matrix unfoldings of X [5]. The HOSVD can be viewed as a
Tucker3 model [13], which has a long history in tensor analysis.

We will first consider the “non-degenerate” case, where d ≤
min {M1, M2, M3}. Also assume that the factors A, B, and C
have full column-rank d. The degenerate and rank-deficient cases
are discussed in Section 4.4. In the non-degenerate case, a low-rank
approximation of X is given by

X ≈ S [s] ×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 , (6)

where S [s] ∈ C
d×d×d, U

[s]
r ∈ C

Mr×d, r = 1, 2, 3. Note that (6)
holds exactly in the absence of noise and if d is the true rank of the
tensor X . For the following derivations we assume that this is true
and hence write equalities. In the presence of noise, all the following
relations still hold approximately.

2The n-rank of a tensor is defined as the rank of the space spanned by the
n-mode vectors. In contrast to this, the rank of a tensor is equal to r if the
tensor can be decomposed into a sum of r, but not less than r, rank-1 tensors.
An N -th order tensor is rank-1 if and only if it can be written as the outer
product of N non-zero vectors.

Consider the 1-mode unfolding of X . It can be expressed in
terms of the PARAFAC model (4) and in terms of the HOSVD (6).
Therefore

[X ](1) = U
[s]
1 ·

„h
S[s]

i
(1)

·
h
U

[s]
2 ⊗ U

[s]
3

iT
«

(7)

= A ·
“
[Id](1) · [B ⊗ C]T

”
. (8)

Comparing (7) and (8) it is easy to see that A and U
[s]
1 span the

same column space. Thus, there is a non-singular transform matrix

T1 ∈ C
d×d, such that A = U

[s]
1 ·T1. A similar analysis for the two-

and three-mode unfoldings of X shows that ∃ T2, T3 ∈ C
d×d, such

that B = U
[s]
2 · T2 and C = U

[s]
3 · T3.

Inserting these relations into equation (6) and comparing with
the model from equation (4) yields

S [s] ×1 T −1
1 ×2 T −1

2 ×3 T −1
3 = Id. (9)

This identity shows that we are searching for matrices that diagonal-
ize the core tensor by transforming it into the identity tensor. Next,
we show how this problem can be reduced to a joint diagonalization
problem of several matrices.

Replacing A and B in (4) and comparing the result with (6) we
find that “

S[s] ×3 U
[s]
3

”
×1 T−1

1 ×2 T−1
2 = Id ×3 C (10)

Consider the k-th three-mode slice (i.e., the third index is fixed, the
others vary) of the tensor equation (10). The right-hand side of this
equation is a diagonal matrix constructed from the k-th row of C .
The slicing operation can be accomplished by computing the three-
mode product between (10) and the transpose of the k-th pinning
vector ek,M3 of size M3. Then we have““

S[s] ×3 U
[s]
3

”
×1 T

−1
1 ×2 T

−1
2

”
×3 e

T
k,M3

= (Id ×3 C) ×3 e
T
k,M3“

S[s] ×3 U
[s]
3

”
×3 e

T
k,M3| {z }

S3,k

×1T
−1
1 ×2 T

−1
2 = diag {C(k, :)}

T
−1
1 · S3,k · T

−T
2 = diag {C(k, :)} (11)

using some easily checked identities of n-mode products. We have
defined the matrix S3,k which represents the k-th three-mode slice

of the tensor S [s] ×3 U
[s]
3 . Obviously the tensor equation has been

transformed into a matrix equation (more precisely, a tensor of size
d×d×1). We can proceed in the same manner for k = 1, 2, . . . , M3.
Combining all the equations we have

S3,1 = T1 · diag {C(1, :)} · TT
2

S3,2 = T1 · diag {C(2, :)} · TT
2

.

.

.

S3,M3
= T1 · diag {C(M3, :)} · TT

2 .

(12)

The system of equation (12) represents an asymmetric joint diago-
nalization problem, since the transform matrices T1 and T2 can in
general be different. However, (12) can be transformed into a sym-
metric joint diagonalization problem by multiplying all the slices

S3,k by the inverse of one particular3slice S3,p from either the left-
hand side (lhs) or the right-hand side (rhs), where p is an arbitrary
number between 1 and M3.

Srhs
3,k = S3,k · S−1

3,p

= T1 · diag {C(k, :)} · TT
2 · T−T

2 · diag {C(p, :)}−1 · T−1
1

= T1 · diag {C(k, :)} · diag {C(p, :)}−1| {z }
C

D,p
k

·T−1
1 (13)

3The choice of p is still arbitrary and therefore we can use it to optimize
the performance even further. Since we have to form the inverse of S3,p we

can choose a slice that is well conditioned, i.e., p = arg minkcond
˘
S3,k

¯
.

Here, cond {A} is a function that indicates the conditioning of the matrix
A, i.e., its value should be small for well conditioned matrices and large
otherwise. Note that this process is similar to selecting pivots when solving
linear sets of equations.
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Slhs
3,k =

“
S−1

3,p · S3,k

”T
= ST

3,k · S−T
3,p

= T2 · diag {C(k, :)} · TT
1 · T−T

1 · diag {C(p, :)}−1 · T−1
2

= T2 · CD,p
k · T−1

2 . (14)

Note that the additional transpose operator in the definition of S lhs
3,k

is introduced due to symmetry reasons in the resulting diagonaliza-

tion problems. The matrix CD,p
k is a diagonal matrix of size d × d,

the n-th element on its diagonal equals ck,n/cp,n. The set of ma-

trices CD,p
k for k = 1, 2, . . . , M3 therefore describes C up to an

arbitrary scaling of each of the columns. Since this ambiguity is in-
herent in the PARAFAC model, this set of matrices contains all the
information about C we can extract. We now have transformed the
original problem onto two joint diagonalization problems

Srhs
3,1 = T1 · CD,p

1 · T−1
1 Slhs

3,1 = T2 · CD,p
1 · T−1

2

Srhs
3,2 = T1 · CD,p

2 · T−1
1 Slhs

3,2 = T2 · CD,p
2 · T−1

2

.

.

.
.
.
.

Srhs
3,M3

= T1 · CD,p
M3

· T−1
1 Slhs

3,M3
= T2 · CD,p

M3
· T−1

2

Many efficient solutions for finding these factors exist, e.g., [6].
From the joint diagonalization of the matrices Srhs

3,k ,
k = 1, 2, . . . , M3 we obtain an estimate for C , which we will term
ĈI and another estimate for C from the diagonalization of S lhs

3,k

which is denoted as ĈII. Additionally, the matrices that diagonalize
the sets yield estimates for T1 and T2 which we can use to compute

estimates for A and B, i.e., ÂIV = U
[s]
1 · T1 and B̂IV = U

[s]
2 · T2.

Due to the symmetry of the problem we can generate similar
diagonalization problems for the second mode

Srhs
2,1 = T1 · BD,p

1 · T−1
1 Slhs

2,1 = T3 · BD,p
1 · T−1

3

Srhs
2,2 = T1 · BD,p

2 · T−1
1 Slhs

2,2 = T3 · BD,p
2 · T−1

3

.

.

.
.
.
.

Srhs
2,M2

= T1 · BD,p
M2

· T−1
1 Slhs

2,M2
= T3 · BD,p

M2
· T−1

3

leading to the estimates B̂I and B̂II from the diagonalized matri-

ces and ÂIII = U
[s]
1 · T1 and ĈIV = U

[s]
3 · T3. Here, BD,p

k =

diag {B(k, :)} · diag {B(p, :)}−1
, Srhs

2,k = S2,k · S−1
2,p, S lhs

2,k =`
S−1

2,p · S2,k

´T
, and S2,k =

h“
S [s] ×2 U

[s]
2

”
×2 eT

k,M2

i
(1)

. Note

that the unfolding operator in the definition of S2,k merely serves to
transform the d× 1× d tensor into a d× d matrix, as the squeeze
operator would do in Matlab.

Finally, for the first mode we obtain

Srhs
1,1 = T2 · AD,p

1 · T−1
2 Slhs

1,1 = T3 · AD,p
1 · T−1

3

Srhs
1,2 = T2 · AD,p

2 · T−1
2 Slhs

1,2 = T3 · AD,p
2 · T−1

3

.

.

.
.
.
.

Srhs
1,M1

= T2 · AD,p
M2

· T−1
2 Slhs

1,M1
= T3 · AD,p

M2
· T−1

3

leading to the estimates ÂI and ÂII from the diagonalized matrices

and B̂III = U
[s]
2 · T2 and ĈIII = U

[s]
3 · T3. As before, AD,p

k =

diag {A(k, :)} · diag {A(p, :)}−1
, Srhs

1,k = S1,k · S−1
1,p, S lhs

1,k =`
S−1

1,p · S1,k

´T
, and S1,k =

h“
S [s] ×1 U

[s]
1

”
×1 eT

k,M1

i
(2)

.

4.2. Best matching
As we have demonstrated in the previous subsection, the structure of
the problem enables us to compute four estimate for each of the fac-
tors A, B, and C . In order to select the final estimates we propose
the following scheme

Â = Âe1 , B̂ = B̂e1 , Ĉ = Ĉe1 , where

e1, e2, e3 = arg min
i1,i2,i3∈{I,II,III,IV}

˛̨̨˛̨̨
X −

“
Id ×1 Âi1 ×2 B̂i2 ×3 Ĉi3

”˛̨̨˛̨̨
H

.

In other words, we reconstruct the tensor with all possible combina-
tions of estimates and select the triple that best matches the noisy ten-
sor X . If all combinations are tested exhaustively, there are 43 = 64
combinations to be tested.

4.3. Combined joint diagonalization problems
The structure of the problem can be exploited even further to gener-
ate more estimates of the factors A, B, and C . Each of the transform
matrices T1, T2, and T3 appears in two of the six diagonalization
problems we considered so far. We can therefore combine the corre-
sponding sets of matrices to solve three bigger joint diagonalization
problems. As a result we obtain three more estimates (V, VI, VII) for
each of the factors (one from the combined estimate of the transform
matrix, two from the diagonalized matrices). In total we therefore
have seven estimates for A, for B, and for C . For the best matching
we can then test up to 73 = 343 possible combinations. However,
simulations have shown that the additional performance enhance-
ment is very small. To save computational complexity it is therefore
sufficient to compute the four estimates as described in Section 4.1.

4.4. Degenerate case
In the degenerate case, the number of components d satisfies d >
min {M1, M2, M3}. We show that our closed-form solution can
still be applied to the case where d exceeds the size of the array in
one of the modes but is still less or equal than the size of the array
in all other modes. Without loss of generality we assume that the
“degenerate mode” is the first mode, i.e., d > M1, d ≤ M2, M3.

In this case the matrix U
[s]
1 is of size M1 ×M1 whereas A is of

size M1×d. Since d > M1 we cannot recover A from U1 by multi-
plying with a transform matrix T1. However, since we assumed non-
degeneracy in the remaining modes, B and C , we can still use the
transform matrices T2 and T3. Consequently, the “asymmetric” joint
diagonalization problem (as in (12)) cannot be expressed for the third
or the second mode, but still for the first mode, i.e., the diagonaliza-

tion of the slices of S1,k =
h“

S [s] ×1 U
[s]
1

”
×1 eT

k,M1

i
(2)

. We can

also multiply by the inverse of the p-th slice to render the problem
symmetric. This results in the two diagonalization problems for S rhs

1,k

and S lhs
1,k, k = 1, 2, . . . , M1. Therefore, in the degenerate case, we

obtain two estimates for A (from the diagonalized matrices), one for
B, and one for C (from the corresponding transform matrices). For
the best matching we only need to test two alternatives.

The case where one of the factors A, B, and C does not have
full column rank can be treated in a similar fashion. In this case,
the corresponding transform matrix Tn is rank-deficient and there-
fore none of the slices Sn,p is invertible for p = 1, 2, . . . , Mn. If
the factors in the other two modes are non-degenerate and full-rank
we can still solve the joint diagonalization problem where the n-th
mode appears on the diagonal. Of course, the identifiability of the
PARAFAC model has to be fulfilled [12].

4.5. Symmetric case
In the symmetric case, two factors in the PARAFAC model are
equal, e.g., A = B. In this case we can define the HOSVD of X in

such a way4 that U
[s]
1 = U

[s]
2 and consequently T1 = T2. Applying

the closed-form solution as described above, it is easy to see

that it will automatically be guaranteed that Âe = B̂e for
e ∈ {I, II, III, IV, V, VI, VII}, i.e., the estimates are automatically
symmetric.

4There is an ambiguity in the HOSVD since every singular vector can be
multiplied by a factor of -1 if the corresponding elements in the core tensor
are appropriately scaled. Choosing the factors appropriately, we can render
the HOSVD symmetric.
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Fig. 1: Relative RMSE vs. SNR. Critical scenario. Left: real-valued, middle: complex-valued, Right: complex-valued, Hermitian symmetric.

The symmetry can be exploited to enhance the estimate further.
Consider the asymmetric joint diagonalization problem in equation
(12). We note that for T1 = T2 it has a special structure which is
known in the literature as “congruence transform”. Direct solutions
of joint diagonalization problems of this form exist (e.g., the AC-DC
algorithm [14]). We therefore do not need to multiply by the inverse
of the pivot slice which is numerically advantageous, especially if
the slices are badly conditioned.

Another frequently encountered form of symmetry in the
PARAFAC model is the conjugate symmetry, where, e.g., A = B∗

[10]. In this case, the HOSVD of X can be defined in such
a way that U1 = U ∗

2 and consequently T1 = T ∗
2 . As for

the “transpose” symmetry, the estimates resulting from our

proposed method are automatically symmetric, i.e., Âe = B̂∗
e for

e ∈ {I, II, III, IV, V, VI, VII}. Also, (12) is in the form of a
congruence transform and can be solved directly (e.g., via the
AC-DC algorithm [14] in its “Hermitian version”).

5. SIMULATION RESULTS
In this section we evaluate the performance of our proposed closed-
form solution through numerical computer simulations. For all the
simulations we set M1 = 4, M2 = 8, M3 = 7 and d = 3. The first
factor is fixed to

A =

2
64

1.00 1.00 1.00
1.00 0.95 0.95
1.00 0.95 1.00
1.00 1.00 0.95

3
75 (15)

We observe that the columns of A are almost colinear (cond{A} ≈
116), i.e., we consider a critical scenario. The elements of B and
C are independently drawn from a zero mean Gaussian distribution
in the first simulation and from a zero mean circularly symmetric
complex Gaussian distribution in the second and third simulations.
In the third simulation B is set to C∗ and M2 = M3 to 6 to create a
Hermitian symmetric problem. We display a Monte-Carlo estimate
of the relative root mean square reconstruction error defined as

rRMSE =

vuuuutE

8><
>:

˛̨
˛
˛̨
˛Id ×1 Â ×2 B̂ ×3 Ĉ − X 0

˛̨
˛
˛̨
˛2
H

||X 0||2H

9>=
>;. (16)

For comparison we also show the performance of an iterative im-
plementation of PARAFAC, the DTLD and the GRAM algorithms
in the real-valued case and for the second simulation their complex-
valued counterparts, the COMFAC, the cDTLD and the cGRAM al-
gorithms.5

From the simulation results depicted in Fig. 1 we can conclude
that the proposed closed-form scheme outperforms DTLD and
GRAM and at low SNRs even the iterative PARAFAC and
COMFAC schemes (which required around 75 iterations on the
average, in some cases even up to several thousands).

5For DTLD, GRAM, and PARAFAC, the N-way toolbox v3.10 from
http://www.models.life.ku.dk/source/nwaytoolbox/index.asp is used, which in-
cludes the enhanced line search [9]. An implementation of COMFAC is taken
from http://www.ece.umn.edu/users/nikos/public html/3SPICE/code.html.

6. CONCLUSIONS
In this contribution, a closed-form solution to PARAFAC is intro-
duced. It is demonstrated that the task of finding the factors can
be reduced to the well-studied problem of a joint diagonalization of
several matrices. Thereby we extend the ideas of [3, 4] by render-
ing the diagonalization problems symmetric. We also show that the
structure of the problem allows to compute up to seven estimates for
each of the factors A, B, and C . To find the best combination, a
selection scheme based on the noisy tensor is proposed.

Moreover, we discuss the degenerate case and show that the
closed-form solution can still be applied if one of the factors does
not have full column rank. For the symmetric and the Hermitian
symmetric cases, it is demonstrated that the estimates of the closed-
form solution are automatically symmetric or Hermitian symmetric,
and an improved estimation scheme based on congruence transforms
is proposed. In simulations, the performance of the closed-form so-
lution is comparable to iterative PARAFAC solutions that include
many state of the art improvements (e.g., the enhanced line search
[9]). In critical scenarios, the closed-form solution has a superior
estimation accuracy.
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