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ABSTRACT

Transmit beamforming for physical layer multicasting is emerging
as an appealing transmission modality for next-generation cellular
wireless systems, notably UMTS-LTE. Optimal design of the trans-
mit beamformer(s) from a quality of service perspective is a hard
computational problem; however, convex approximation tools have
been shown to yield high-quality approximate solutions. Recently,
Lozano proposed a particularly simple adaptive multicast beamform-
ing algorithm that aims to serve a certain percentage of users. In
parallel, convex approximation algorithms were developed for the
more general problem of joint co-channel multicast beamforming
and admission control. In this paper, we focus on the important (in
view of recent standardization activity) special case of a single mul-
ticast group, and put the two approaches to the test. Through simple
examples, we pinpoint issues regarding convergence of Lozano’s al-
gorithm. In numerical experiments with measured channel data, we
show that a convex approximation approach is preferable performance-
wise. At the same time, we find merits in the simplicity of L.ozano’s
approach, and suggest a way to improve its performance.

Keywords: Multicasting, beamforming, admission control, UMTS-
LTE

1. INTRODUCTION

Multicasting has recently gained renewed momentum as an impor-
tant transmission modality for wireless networks. Multicasting bridges

the gap between two widely used information dissemination paradigms:

broadcasting, where common information is delivered to all nodes
in a network; and independent unicast transmissions, consisting of
many simultaneous point-to-point links. The middle ground between
the two is important for existing and emerging applications, such as
Internet TV, pay-per-view, streaming audio programming, and soft-
ware updates.

Multicasting over wired networks has been much studied, and
there are effective multicast routing solutions for wired networks.
Wireless networks are different, in a number of ways. Along with
fading and interference comes the wireless “broadcast advantage”: it
is possible to reach multiple destinations with a single physical-layer
transmission. With the growing availability of transmit antenna ar-
rays, this opens the door for multicasting at the physical layer: it is
possible to beamform in a way that steers energy towards a group
of receivers, while minimizing interference to all others. This can
be viewed as a generalization of traditional transmit beamforming,
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where a single beam (lobe) is designed to steer energy in the di-
rection of a single receiver. In multicast beamforming, the transmit
beamformer generally creates multiple lobes, to serve a group of re-
ceivers.

To the best of our knowledge, Lopez [7] was the first to ponder
about the potential of multicast beamforming. Lopez suggested a
simple beamformer design approach: maximize the group-average
received Signal to Noise Ratio (SNR). This is intuitive, and it yields
a particularly simple design problem: the beamformer weight vector
is the dominant singular vector of the channel matrix. Unfortunately,
this does not guarantee a certain SNR to each receiver in the group.
This is a serious drawback, because streaming media traffic requires
Quality of Service (QoS), and the multicast rate is determined by the
weakest link, not the average link quality.

Multicast beamforming under SNR constraints was first treated
in [13] (see also references therein), where it was shown that the
problem is NP-hard, yet also amenable to convex approximation
tools (see also [9]). The case of multiple interfering multicast groups
has been treated in [5] and it includes transmit beamforming for the
multiuser downlink (multiple interfering unicast transmissions, one
per user) and hybrid co-channel multicast and unicast scenarios as
special cases. The multiuser downlink case is convex, as shown in
[1] (see also [4]). There are other special cases that are convex - see
[6]. The joint beamforming and admission control problem for the
multiuser downlink has been treated in [11], and its extension to the
case of multiple interfering multicast groups is reported in [12].

In this paper, we focus on a special case of [12], namely, that
of a single multicast group, which is important in view of recent
standardization activity in the context of UMTS-LTE; see Lozano
[8], who proposed a particularly simple adaptive multicast beam-
forming algorithm that aims to serve a certain percentage of users.
Lozano’s algorithm operates under a fixed power budget, and at-
tempts to maximize the minimum received SNR. Introducing the op-
tion to reject difficult-to-serve users for the benefit of the remaining
ones, Lozano’s algorithm works well in certain cases, considering
its simplicity on one hand and NP-hardness of the problem on the
other. Rejecting a certain percentage of users is a form of admission
control, however, and therefore the proper baseline for [8] would be
one that jointly accounts for beamforming and admission control.

Through simple examples, we pinpoint issues regarding con-
vergence of Lozano’s algorithm. In numerical experiments with
measured channel data, we show that the convex approximation ap-
proach is preferable performance-wise. At the same time, we find
merits in the simplicity of L.ozano’s approach, and suggest a way to
improve its performance.
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2. FORMULATION AND CONVEX APPROXIMATION

Consider a base station with N transmit antenna elements, and K
single-antenna receivers that wish to subscribe to the same multicast.
Let h; denote the NV x 1 complex baseband-equivalent channel from
the transmit antenna array to receiver 4,4 € U := {1,--- , K}, and
wil denote the 1 x N beamforming weight vector applied to the
N transmitting elements. The problem of interest can be stated as
follows
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where o is the additive noise power at receiver i and ¢; stands
for the associated minimum SNR requirement. When (2) is not
enforced, the resulting problem is always feasible, provided that
h; # Onx1, Vi; still, finding an optimum solution is generally NP-
hard, as shown in [13]. An upper bound on transmission power is
important in practice for a number of reasons - including regulatory
/ co-channel interference considerations, and power amplifier lim-
itations. In this case, an important concern is that (1)-(3) can be
infeasible, which brings up the issue of admission control.

When admission control is necessary, a natural objective is to
maximize the number of users that can be served at pre-specified
SNR levels for a given P. An alternative would be to fix the number
(or percentage) of users to be admitted and maximize the minimum
SNR among those only. The second approach cannot guarantee pre-
specified minimum SNR levels, but both can be used to trade-off be-
tween coverage of the subscriber population and minimum SNR that
can be offered to the admitted part of the population for a given P.
Clearly, the smaller the coverage the higher minimum SNR (and thus
multicast rate) can be offered to the admitted users. Similar to the
concept of a receiver operating characteristic, multicast performance
in this context is characterized by the minimum SNR / multicast rate
- coverage curve, parameterized by P.

We begin with the first approach. Mathematically, we aim for
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where | S| denotes the cardinality of S. Given S,, we then
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The above is a special case of the setup considered in [12], which ac-
counts for multiple interfering co-channel multicasts. It is shown in
[12] (see also [11]) that it is possible to recast the two-stage problem

in (4) - (8) in the following convenient equivalent form:
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where 6 < min;ey —5 €< %, and the s;’s are admission
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control variables: s; = -1 (si = +1) means that receiver ¢ is ad-
mitted (rejected). The above reformulation is convenient because
it yields an effective convex approximation of the original problem
formulation, which is non-convex and NP-hard. This is so because
(4)—(8) (and its reformulation in (9)—(11)) contains the version con-
sidered in [13] (without the explicit power constraint, or, equiva-
lently, P = o0), which is already NP-hard. Define W := wwil,
H; := h;hf s; = [ss I]T, and S; := s;s7 . It can be shown [12]
that (9)-(11) is equivalent to

€Tr (W) + (1 —€) Y Tr(12x28:) (12)

min
N XN . 2X2
wec {sier2x2}

=
subject to : Tr(W) < P, (13)
Tr(H; W) +j;1Tr(1g><QSi) — (14)
W ZZ 0,rank(W) =1, (15)

S; > 0,rank(S;) = 1,8,(1,1) = S;(2,2) =1, Vie U. (16)

Dropping the rank-one constraints, we obtain a semidefinite program
that is a convex relaxation' of the original problem and can be effi-
ciently solved using modern interior point solvers [2]. Alas, a solu-
tion of the relaxed problem generally only provides a lower bound
on the objective of the original problem; but there is considerable
optimization literature exploring ways to generate a high-quality ap-
proximate solution of the original problem from a solution of the
relaxed problem. In our context, the following trimmed-down (iso-
lated multicast) version of the algorithm in [12] seems to work best
among the several options we tried.

Algorithm 1 Multicast Membership Deflation by Relaxation (MDR):
1. U—{1,..,K}

2. Solve the relaxed problem, and let W denote the resulting
transmit covariance matrix

3. W = principal component of W, scaled to power Tr(W).

4. For each i € U, check whether |W™"'h;|? Jo? > c;. If true ¥
i € U, stop (feasible solution has been found); else pick user
with largest gap to its target SNR, remove from U and go to
step 2.

3. LOZANO’S ALGORITHM

Lozano’s algorithm [8] is very simple and well-suited for adaptive
on-line implementation. Its performance is remarkably good in cer-
tain cases, given that the problem it attempts to solve is non-convex
and NP-hard.

Lozano’s algorithm starts with an initial weight vector wo. At
iteration ¢, t € {1,2,---} it first computes the previously attained
SNR values for all users Pwil H;w;_1, i € U, where H; is de-
fined as either h;h /o? or its expectation, depending on context;
and w; denotes the weight vector at iteration ¢. It then sorts the
resulting SNRs and leaves out the users with the smallest SNRs.
The cut-off SNR threshold may be fixed to enforce a strict SNR
constraint for a variable number of users; or adjusted in each iter-
ation to ensure that a fixed number of users will be considered, al-
beit without a strict SNR guarantee. The second option works better

Note that (12)-(16) is a non-convex quadratically constrained quadratic
program, and rank relaxation can be interpreted as its bi-dual problem.
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in practice. Either way, the algorithm selects the weakest user, ",
from the list of non-excluded users, makes a gradient step in its di-
rection, i.e., w; = wy—1 + pH;~w;_; followed by normalization
w; = W/ ||w¢||2, and continues to the next iteration.

Despite its conceptual simplicity, L.ozano’s algorithm exhibits
intricate convergence behavior. In order to appreciate related is-
sues, consider the following very simple scenario: there are N = 2
transmit antennas and K = 2 users, with associated channels h; =
[10]7 and hy = [0 1]7 (each user only listens to a single transmit
antenna). Let o1 = o2 = P = 1. If both users should be served,
the optimal solution is w = %[1 1]", attaining an SNR of 3 for
each user. T.ozano’s algorithm initialized with wo = h; (say, be-
cause it was previously serving only user 1, and now user 2 comes
into play) has a fixed point at hy, which is in the null space of Hy -
thus user 2 is simply shut off from the system for all p. This shows
that the algorithm can converge to a very suboptimal point. A small
perturbation of either hy or wo takes the algorithm away from this
undesirable fixed point; for small enough p, the iterates typically ap-
proach the optimum solution, albeit slowly. Beyond the usual speed
- misadjustment trade-off, however, for this toy problem Lozano’s
algorithm typically exhibits limit cycle behavior when randomly ini-
tialized. Figure 1 illustrates this behavior for © = 0.1. Choosing
a smaller p helps reduce the magnitude of the oscillation, but the
problem persists even for . = 1074,

Summarizing, L.ozano’s algorithm may fail to converge, or con-
verge to a suboptimal solution, and is sensitive with respect to ini-
tialization and problem instantiation. These issues do crop up in
realistic problem setups, however the algorithm performs better, on
average, than what the above toy example suggests. Given its sim-
plicity, the algorithm should be seriously considered as a candidate
for multicast beamforming.

4. RESULTS

MDR fixes a certain minimum SNR and seeks to optimize coverage
(number of users served) for a given P. Lozano’s algorithm, on the
other hand, fixes coverage (percentage of users served) and attempts
to maximize minimum SNR for a given P. As such, the best way
to compare the two is by means of the respective minimum SNR -
coverage curves, parameterized by P.

In our experiments, we used measured channel data downloaded
from the University of Alberta at http://www.ece.ualberta.ca/~mimo/
(see also [3]). Details about data selection and pre-processing can be
found in [10].

We used instantaneous channel vectors (rank-one channel co-
variance matrices) and the reported results are averages over 30 tem-
poral channel snapshots, spanning 30 seconds. We also tested the
case of long-term Channel State Information (CSI) as in [8], where
only average received SNRs can be guaranteed. We estimated the
associated channel covariance matrices by averaging each channel
vector over the 30 temporal snapshots; i.e., with h; ,, denoting the
channel from the transmit antenna array to receiver ¢ at time n €
{1,2,---,30}, we used H; = = 3% hi,hY, in place of H;
for both algorithms.

In addition to MDR and LLozano’s algorithm, we include two ad-
ditional algorithms in the comparison. One is a baseline algorithm
that starts with a given (common) SNR target ¢; = c and finds a
maximal subset of users that can be served at or above the desired
SNR for a given P using enumeration (ENUM). Recall that the mul-
ticast beamformer design problem is NP-hard even for a fixed subset
of users; but, if enumeration over all subsets (using the potentially
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higher-rank relaxation solution to test each subset) ends up returning
a rank-one solution, then this solution is overall optimal - because
one cannot possibly serve more users, even with a higher-rank co-
variance. Surprisingly, in all cases considered except for K = 10
and no admission control (full coverage), ENUM indeed returns the
optimal solution - hence it can be used as the ultimate performance
baseline. Of course, its complexity is exponential in K and thus
prohibitive for large K.

Given the sensitivity of Lozano’s algorithm with respect to ini-
tialization, we propose using the average SNR beamformer of Lopez
[7] to initialize T.ozano’s algorithm, instead of the [1 0 - - - 0] initial-
ization suggested in [8]. This starts the iterations at a reasonable
point and, as we will see, consistently improves the results. We call
this variation the LLI algorithm (L.ozano with Lopez Initialization).

In all experiments, the parameters were set as follows: N = 4;
K = 100r 30; P = 30; ¢; = cand 012 = ¢2 = 1, Vi; for MDR,
€ = 10710, 0 < mingey 4071/01-2. For Lozano’s algorithm and
LLL p = 1072 for K = 10; W= 1072 for K = 30; and conver-
gence is declared when the difference in minimum SNR drops below
1073, These values were empirically optimized for the fastest possi-
ble convergence in under 10? iterations (note that associated analyt-
ical guidelines were not provided in [8], and recall the potential for
limit cycles).

For K = 10, we selected measurements 1, 3, 4, 6, 7, 9, 13, 15,
12, 17 in Fig. 1 of [10], distributed in six locations (denoted L1-L3,
L5-L.7 in Fig. 1 of [10]). For K = 30, we selected six users around
each of L1, L2, L3, and 4 users around L5, L6, L7.

The results are summarized in Fig. 2, 3, for the case of instanta-
neous CSI; and Fig. 4 for long-term CSI. For K = 10, we can af-
ford the ENUM baseline, and notice from Fig. 2 that MDR performs
very close to the optimum in terms of the minimum SNR - coverage
curves. Lozano’s algorithm is far behind - the average coverage gap
is up to 5 users (50%) for a given average minimum SNR, while the
average minimum SNR gap is up to 5 dB for a given average cov-
erage. The proposed LLI variant falls between Lozano and MDR.
The situation is similar for K = 30 in Fig. 3, except that we can-
not afford ENUM in this case, and, interestingly, L.I.I approaches the
performance of MDR. For the long-term CSI (single set of covari-
ance matrices) K = 10 results in Fig. 4, note that MDR is somewhat
further away from optimum in this case; Lozano’s algorithm is still
away from MDR, and LLI is between the two.

5. DISCUSSION AND CONCLUSIONS

MDR performs close to the optimum in those cases where it is pos-
sible to use enumeration as a baseline. In all cases considered, MDR
outperforms LLozano’s algorithm by a significant margin. Interest-
ingly, our simple modification of Lozano’s algorithm significantly
improves performance, and in certain cases brings it close to that of
MDR (cf. Fig. 3).

In so far as complexity is concerned, we note that, for the above
setup, Lozano’s algorithm requires between 102 and 10~! seconds
per problem instance, whereas MDR between 10~2 and 1 second
- s0 Lozano is about two orders of magnitude faster in our imple-
mentation. ENUM takes about 2 minutes for K = 10. LLI is
generally faster than Lozano’s algorithm, due to the better initial-
ization, despite the up-front complexity of computing the dominant
singular vector that maximizes the group-average SNR. The latter
can be computed in an iterative fashion using the power method,
which makes the complete solution very appealing from a practical
perspective.
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We conclude that MDR is the best option performance-wise, and
its complexity is within reach of today’s base stations; however, fur-
ther improvements of LI hold the promise of bridging the perfor-
mance gap at a much lower complexity. We are currently investigat-
ing such improvements.
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Fig. 1. Example of limit cycle behavior of Lozano’s algorithm.
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Fig. 2. Average SINRmin versus average number of users served:
30 measured channel snapshots. K = 10, P = 30.
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Fig. 3. Average SINRmin versus average number of users served:
30 measured channel snapshots. K = 30, P = 30.
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versus number of users served: long-term CSI.



