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ABSTRACT

Adaptive interference cancellation is addressed in an orthogonal fre-
quency division multiplexing (OFDM) system with a frame contain-
ing a number of temporally distributed pilot symbols, e.g., as in
the IEEE 802.16-2004 standard. A nonstationary symbol-by-symbol
switching technique based on banks of training-based and semi-blind
estimators is analyzed by means of comparison with the conven-
tional stationary pilot-based solution and with the nonasymptotic
maximum likelihood benchmark especially developed for assess-
ment of the proposed nonstationary interference cancellation algo-
rithms.

Index Terms— Semi-blind second-order filtering, symbol-by-
symbol switching, maximum likelihood benchmark, WiMAX.

1. INTRODUCTION

Multiple-antenna interference cancellation (IC) at the receiver has
been the subject of a great deal of research in different application
areas including wireless communications, e.g., [1] and many other
articles. In wireless communications, unsynchronized transmissions
in neighboring cells lead to a nonstationary asynchronous co-channel
interference (CCI) scenario, where some of the interference compo-
nents may not overlap with the training data of the desired signal [2],
[3]. One example of such a scenario is interference mitigation on the
uplink of a cellular WiMAX-compliant system based on the IEEE
802.16-2004 [4] standard addressed in [5].

A second-order statistics adaptive semi-blind (SB) algorithm for
asynchronous CCI cancellation is proposed and studied in [3]. It
is based on regularization of the conventional training-based least
squares (LS) solution by means of the weighted covariance matrix
estimated over the data interval. It is pointed out in [2] that tem-
porally spreading the training symbols over the data slot (distributed
training) could significantly simplify cancellation of the asynchronous
CCI because it increases probability of overlapping between CCI and
the training data. A nonstationary IC solution is presented in [5] in
the case of flat fading for the CCI, where the interference statistic can
be estimated on-line using averaging over the tracking subcarriers of
an OFDM system.

In this paper, nonstationary semi-blind IC is studied in a dis-
tributed training scenario that is relevant for unsynchronized

∗Part of this work has been done in the context of the IST FP6 MEM-
BRANE project.

WiMAX-based cellular and backhaul networks. The proposed algo-
rithm exploits channel correlation between adjacent subcarriers and
applies OFDM symbol-by-symbol (subcarrier group by subcarrier
group) switching over the current OFDM symbol and the surround-
ing pilot symbols. Finite alphabet (FA) based switching is applied
over a bank of the SB algorithms defined for each possible scenario.
A nonasymptotic maximum likelihood (ML) benchmark is devel-
oped for such a solution and used for its performance assessment in
the narrowband scenario for a group of subcarriers. In [6], an OFDM
version of the nonstationary algorithm is studied in typical propaga-
tion conditions demonstrating significant performance improvement
compared to the conventional stationary LS algorithm.

2. PROBLEM FORMULATION

We consider an uplink of an unsynchronized cellular wireless net-
work illustrated in Fig. 1 [5]. Shaded cells in Fig. 1 represent the
first ring of interference for reception of user U0 by base station
BS0. Users in the interfering cells transmit signals (CCI for recep-
tion of the signal of interest) to their base stations BS1 - BS3. All
the users transmit similar data frames according to the IEEE 802.16-
2004 standard [4] that consists of L bursts of Nsymb OFDM sym-
bols including preamble, which contains a training sequence for syn-
chronization and channel estimation, data, and pilot subcarriers. All
the signals in Fig. 1 propagate through similar multipath channels
and are received at base station BS0. Only one transmission per cell
is allowed.

Each frame of the desired signal may be affected by six CCI
components in a three interfering cell network as illustrated in Fig. 2.
A number of the training intervals in a frame of the desired sig-
nal creates a special form of a distributed training scenario. This
is a nonstationary scenario because of the random switching times
between different interference components even if the propagation
channels are stationary over the whole data frame.

It is clear that the nonstationary interference scenario in Fig. 2
requires nonstationary interference cancellation at the receiver. In-
deed, conventional stationary training-based processing (one weight
vector estimated over all the preambles being used for data recovery
over all the bursts) cannot be effective in this scenario because all
4 preambles in this example contain 6 interference components, but
only 3 of them are presented at any time instant during the desired
signal data frame.

The signal received by an antenna array of K elements can be
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expressed as follows:

X(n) = hs(n) +
M�

m=1

gmum(n) + Z(n), (1)

whereX(n) =
�
x1(n), . . . ,xNgr (n)

�
is theK×Ngr matrix of the

received signals for a group of Ngr subcarriers of the nth symbol,
xp(n) is the K × 1 vector of the received signals for the pth sub-
carrier, s(n) =

�
s1(n), . . . , sNgr (n)

�
is the 1 × Ngr vector of the

desired signals, E{s∗(n)s(n)} = INgr , E{s∗(q)s(g)} = 0, q �= g,

um(n) =
�
um1(n), . . . , umNgr (n)

�
are the 1×Ngr vectors of the

m = 1, . . . , M independent CCI components,

E{u∗
m(q)um(g)} =

�
pmINgr for q = g ∈ Nm

0 for all other q and g
, (2)

Nm is the appearance interval for the mth CCI component, h and
gm are the K × 1 complex vectors modeling linear propagation
channels for the desired signal and interference, Z(n) is the K ×
Nscriptstylegr matrix of AWGN with variance p0, E{·}, (∗), and
IJ respectively denote expectation, complex conjugation and the
J × J identity matrix. All propagation channels are assumed to
be stationary over the whole data frame and independent for differ-
ent antenna elements and frames. According to [4], a data frame
consists of L slots of Nsym symbols and the training symbol st =�
st1, . . . , stNgr

�
is located in the beginning of each slot.

We assume that reception is perfectly synchronized with the
desired signal, the interference appearance intervals Nm, are not
known at the receiver, sufficient second-order statistics can be esti-
mated on a symbol-by-symbol basis, i.e.,Ngr > K, and the number
of antenna elements exceeds the total number of signals at any time
instant, i.e.,K > M/2 + 1.

A signal estimate can be found as the output of a nonstationary
spatial filter

ŝ(n) = w∗(n)X(n), (3)

wherew(n) is aK × 1 weight vector for the nth symbol.
The optimal weight vector can be defined as follows:

wopt(n) = R−1(n)h, (4)

where R(n) = E{X(n)X∗(n)} is the covariance matrix of the re-
ceived signal for the nth symbol.

A basic problem is to estimate wopt(n) using the known train-
ing sequence and all the available training Tl and stationary data
intervals Di. Taking into account that the interference appearance
intervals Nm and, hence, the stationary data intervals Di are not
known at the receiver, in this paper we address a simplified problem
of estimating wopt(n) using symbol-based second-order statistics.
Potentially, detection of stationary intervals can be used to improve
performance. This problem is addressed in [7].

Thus, the problem is to estimatewopt(n) using the known train-
ing sequence and symbol-based second-order statistics and compare
performance to the conventional stationary training-based LS solu-
tion as well as to the nonasymptotic ML benchmark under Gaussian
assumption for all variables.

3. NONSTATIONARY SOLUTION

The main idea of a symbol-by-symbol (subcarriers group by subcar-
rier group) switching (SSS) algorithm is to recover each symbol by
means of a number of algorithms corresponding to different possible
CCI scenarios with consecutive selection of the best estimates using
some higher-order statistic criterion, e.g., distance from the FA. The
SSS solution can be summarized as follows:

ŝ(n) = ŝg0 , ŝg(n) = ŵ∗
g(n)X(n), (5)

g0 = arg min
g=1,...,G

distFA{ŝg(n)}, (6)

distFA{ŝg(n)} =

Ngr�
q=1

min
e=1,...,E

(|ae − ŝgq(n)|), (7)

where ŝg(n) is the gth signal candidate, G is the total number of
algorithms, and ae is the eth symbol of the FA of E symbols.

In the considered environment, the main problem is to find a
set of algorithms for estimating the signal candidates ŝg(n). To do
so, we need to analyze all the possible scenarios that can be met
on a symbol-by-symbol basis. Let us consider the 3 interfering cell
scenario shown in Fig. 1 and define all the possible interference sce-
narios for a data symbol and the left and right surrounding training
symbols1. All 6 different scenarios are presented in Fig. 3. These
scenarios are different because all other possible scenarios can be
transformed to the ones shown in Fig. 3 by means of renumbering
the interference components and exchanging the training intervals.

Scenarios 1 - 4 are similar because all of them contain the train-
ing symbol(s) with the same set of the CCI components as the data
symbol. Thus, a natural choice for these Scenarios could be the LS
algorithm based on the corresponding training interval(s).

In Scenario 5, the simplest solution could be a regularized LS
(RLS) algorithm [3] based on one of the training intervals, e.g.:

ŵRLS-right =
�
(1− δ)R̂t-right + δR̂

�−1

r̂t-right, (8)

where 0 < δ < 1 is the regularization coefficient that controls the
cancellation ability of the interference component that is not present
in the right training interval (CCI 3 in Fig. 3), and performance
degradation because of distortion of the LS solution required for can-
cellation of CCI 2 and 5. Efficiency of the regularized algorithm and
selection of the regularization coefficient is studied in [3] in the gen-
eral asynchronous CCI scenario.

The regularized algorithm (8) can be applied in the general case
with a number of interference components in the data interval that
are not present in the training interval. In the particular Scenario
5, where only one new CCI component appears in the data interval,
specific semi-blind algorithm with “cleaning” of the training inter-
vals can be exploited as proposed in [6]. We will refer to this esti-
mator as the semi-blind (SB) solution.

Scenario 6 is similar to Scenario 5. The difference is that one of
the training symbols (the left one in Fig. 3) is affected by two CCI
components not present on the other intervals. This means that the
regularized solution (8) and its natural “cleaned” modification, i.e.,
the regularized SB (RSB) algorithm, can be applied in this case.

1For simplicity, the data symbols in the last slot are not considered; they
can be addressed similarly.
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Now, we have the algorithms to apply in all the situations that
may appear in the general scenario shown in Fig. 2. Taking into
account that Scenarios 2-4, and 6 are asymmetrical in terms of the
left/right training intervals, we need to include both left and right
versions of the corresponding estimators to the algorithm banks to be
used by the SSS algorithm (9) - (15). The first bank can be formed
from the semi-blind algorithms as follows:

Bank 1: 1) wLS-(left+right); 2) wLS-left; 3) wLS-right;
4)wSB; 5)wRSB-left; 6)wRSB-right.
The SSS algorithm based on Bank 1 will be referred to as the semi-
blind SSS estimator (SBSSS).

A simplified bank of algorithms can be formed from only the
regularized solutions as follows:

Bank 2: 1)wLS-(left+right); 2)wRLS-left; 3)wRLS-right.
The SSS algorithm based on Bank 2 will be referred to as the regu-
larized SSS estimator (RSSS).

4. NONASYMPTOTIC ML BENCHMARK

For the Gaussian assumption for all variables, we can define the ML
solution for each scenario shown in Fig. 3 similarly to [3], taking
into account the particular sets of the CCI components for the data
and the left and right training symbols:

ŝML = ŵ∗
MLX, (9)

ŵML = Â−1

MLĉML, (10)�
Â, ˆ̄At-left,

ˆ̄At-right
�
ML

= arg max
c,cq,pq,d

γγt-leftγt-right, (11)

γ =
exp(K)det(A−1R̂)

exp[tr(A−1R̂)]
, (12)

γt =
exp(K + 1)det(Ā−1

t
ˆ̄Rt)

exp[tr(Ā−1

t
ˆ̄Rt)]

, (13)

A = cc∗ +
�
q∈Q

pqcqc
∗
q + dIK , (14)

Āt =

�
1 c∗

c cc∗ +
�

q∈Qt pqcqc
∗
q + dIK

�
> 0, (15)

where γ and γt are the likelihood ratios defined for the data and

training symbols (left and right), R̂ and ˆ̄Rt =

�
p̂t r̂∗t
r̂t R̂t

�
are the

sufficient statistics for the data and training symbols (left and right)
and the admissible sets of optimization parametersA and Āt follow
the CCI structures for the corresponding scenarios captured in the
scenario specific sets of the CCI indexes summarized in Table 1.

Table 1. CCI indexes for optimization parameters in (14), (15)
Scenario 1 2 3 4 5 6

Q 1,2,3 2,3,4 2,4,5 2,4,6 2,3,5 2,4,5
Qt-left 1,2,3 1,3,4 1,3,5 1,3,5 1,3,5 1,3,5
Qt-right 1,2,3 2,3,4 2,4,5 2,4,6 2,4,5 2,4,6

To evaluate the ML benchmark performance for different sce-
narios we need initialization of all the parameters and an optimiza-
tion algorithm to solve the nonlinear constrained problem (9) - (15).
Generally, identification algorithms for all the scenarios are required

for initialization. Then, an optimization outliers selection procedure
can be applied similarly to [3] to estimate the ML benchmark perfor-
mance for simulated or measured data. This benchmark is studied in
[8] in the context of Scenario 5 shown in Fig. 3.

In this paper we accept an initialization from the actual param-
eters suitable only for simulated data. This initialization allows us
to take into account finite amount of data effects and significantly
simplify the problem, but it may lead to an optimistic performance
compared to realistic initialization.

5. SIMULATION RESULTS

We simulated a five-element antenna array (K = 5) and the CCI
scenarios illustrated in Fig. 2 and 3. The desired signal and inter-
ference are generated as independent streams of random symbols
(±1+±j)/

√
2. All propagation channels are simulated as indepen-

dent complex Gaussian vectors with unit variance and zero mean.
Signal-to-interference ratio SIR=0 dB is assumed in all narrowband
simulations. Bit error rate (BER) performance is estimated over
104 trials with independent channel and data realizations. The rou-
tine “fmincon” from the MATLAB Optimization Toolbox is used
for maximization in (9) - (15). The minimum mean square error
(MMSE) for the known parameters is used as the asymptotic bench-
mark.

Fig. 4 shows the typical results for the different scenarios in
Fig. 3 for Ngr = 16 and δ = 0.2. The legend in the first plot
(Scenario 1) indicates the algorithms applied in all the scenarios.
The legends in other plots indicate the best algorithms in the partic-
ular scenarios included in Bank 1. The following observation can be
made from Fig. 4: the results in Scenario 1 illustrate the LS algo-
rithm that exploits all the available training data is very close to the
ML solution in this case; in all other scenarios, LS estimated over
both training intervals demonstrates very poor performance com-
pared to the benchmarks and the semi-blind algorithms; in Scenario
3 (similar results are observed in Scenarios 2 and 4), the best results
are obtained by means of LS based on the training interval with the
same set of the CCI components as for the data interval. Its perfor-
mance degradation is less than 0.5 dB at 1% BER compared to the
ML benchmark; in Scenario 5, the SB demonstrates the best results
that are about 1 dB worse compared to the ML benchmark at 1%
BER, RLS shows further 2 dB degradation, but it is still much better
compared to LS at same BER level; Scenario 6 is the most difficult
one. The best results in this case are obtained with RSB and they are
5 dB worse than the ML benchmark and RLS shows further 1.5 dB
of performance degradation at 1% BER.

The BER performance in the 3-cell case shown in Fig. 2 is given
in Fig. 5. Additional to the algorithms and benchmarks, one more
curve (SBSSS-known) is plotted in Fig. 5, which represents the al-
gorithms from Bank 1 with on-line selection of the known symbol-
based scenario instead of the practical FA-based selection as in (6),
(7). In this case, the same information is used for the ML benchmark
and SBSSS-known estimates. So, for fair comparison we should
consider the benchmark and SBSSS-known rather than SBSSS re-
sults, but one can see that for a wide range of Ngr, SBSSS only
slightly outperforms SBSSS-known because of some opportunistic
gain (on-line comparison of a number of random realizations instead
of selection of the best average performance).

To summarize, the simulation results show that all the nonsta-
tionary switching algorithms considered here significantly outper-
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form the conventional LS solution; in the general scenario, the SB-
SSS algorithm demonstrates the best results that are from 0.5 dB to
2 dB worse compared to the ML benchmark depending on the avail-
able amount of data; the simplified RSSS algorithm is very close to
SBSSS for Ngr = [16, 24], but it demonstrate significant perfor-
mance degradation for Ngr = 8.

6. CONCLUSION

The adaptive nonstationary interference cancellation technique has
been proposed for an asynchronous OFDM system with a frame
containing a number of temporally distributed pilot symbols. The
symbol-by-symbol switching algorithms have been developed. A
nonasymptotic benchmark has been proposed and applied for assess-
ment of the final amount of data effects. It has been demonstrated
that the proposed nonstationary solutions significantly outperform
the conventional stationary training-based estimator and
demonstrate performance that is reasonably close to the benchmark
in typical scenarios.
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