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ABSTRACT

In this paper we propose practical algorithms for optimization under
unitary matrix constraint. This type of constrained optimization is
needed in many signal processing applications. Steepest descent and
conjugate gradient algorithms on the Lie group of unitary matrices
are introduced. They exploit the Lie group properties in order to
reduce the computational cost. Simulation examples on signal sep-
aration in MIMO systems demonstrate the fast convergence and the
ability to satisfy the constraint with high fidelity.

Index Terms— Optimization, unitary matrix constraint, array
processing, subspace estimation, source separation

1. INTRODUCTION

Many signal processing applications require optimizing a certain cri-
terion w.r.t a complex-valued matrix, under the constraint that the
matrix has orthonormal columns. Such problems arise in commu-
nications and array signal processing, for example, high-resolution
direction finding, blind and constrained beamforming, and generally
all methods where subspace estimation or tracking is needed. An-
other important class of applications is source separation and Inde-
pendent Component Analysis (ICA). This type of optimization prob-
lems occur also inMultiple-Input Multiple-Output (MIMO) commu-
nication systems. For a recent review, see [1].

Commonly, the problem of optimization under unitary matrix
constraint is solved on the Euclidean space by using classical gra-
dient algorithms. In order to maintain the constraint satisfied, addi-
tional orthogonalization, or some stabilization procedures need to be
applied after every iteration. Consequently, such algorithms expe-
rience slow convergence or deviations from the constraint [1]. The
initial constraint optimization problem may be converted into an un-
constrained one, on an appropriate differential manifold [2,3]. In the
case of unitary matrix constraint, the appropriate parameter space is
the Lie group of n × n unitary matrices U(n). The nice geomet-
rical properties of U(n) may be exploited in order to solve the op-
timization problem efficiently and satisfy the constraint with high
fidelity. Riemannian geometry based algorithms for optimization
with orthogonality constraints are considered in [4]. In [5] a non-
Riemannian approach is introduced. Optimization algorithms oper-
ating on the unitary group are considered in [1,6]. Algorithms in the
existing literature [2–5] are, however, more general in the sense that
they can be applied on more general manifolds than U(n). On the
other hand when applied to U(n), they do not take benefit of the spe-
cial properties arising from the Lie group structure of the manifold.
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In this paper, efficient steepest descent (SD) and conjugate
gradient (CG) algorithms operating on the Lie group of unitary
matrices U(n) are proposed. They move towards the optimum
along geodesics, which on a Riemannian manifold correspond to the
straight line on the Euclidean space. The main contribution in this
paper is that we take full benefit of the geometric properties of the
Lie group, such as simple formulas for geodesics and parallel trans-
port, as well as special matrix structures. Therefore, the resulting
optimization algorithms are computationally efficient.

This paper is organized as follows. In Section 2 we propose
practical steepest descent and conjugate gradient algorithm for op-
timization under unitary matrix constraint. Simulation results are
presented in Section 3. Finally, Section 4 concludes the paper.

2. RIEMANNIAN OPTIMIZATION ALGORITHMS ON
THE UNITARY GROUP

In this section we propose steepest descent (SD) and conjugate gra-
dient (CG) algorithms operating on the Lie group of unitary matri-
ces U(n). The goal is to minimize (or maximize) the real-valued
cost function J of n × n complex matrix argument W, under uni-
tary matrix constraint, i.e, WW

H = W
H
W = I, where I is the

n× n identity matrix. The constrained optimization problem on the
Euclidean space C

n×n may be formulated as an unconstrained one,
on a different parameter space determined by the constraint. The
unitary constraint defines the Lie group of unitary matrices U(n),
which is a differential manifold and a multiplicative matrix group at
the same time. By exploiting the additional group properties of the
manifold of unitary matrices a reduction in complexity is achieved.

2.1. Some key geometrical features of U(n)

This subsection describes briefly some Riemannian geometry con-
cepts related to the Lie group of unitary matrices U(n). We also
show how the properties of U(n) may be exploited in order to re-
duce the complexity of the optimization algorithms.

2.1.1. Tangent vectors and tangent spaces

The tangent space is a n2-dimensional real vector space attached
to every point W ∈ U(n), and it may be identified with the ma-
trix space TWU(n) � {X ∈ C

n×n|XH
W + W

H
X = 0}. The

tangent space at the group identity I is the real Lie algebra of skew-
Hermitian matrices u(n) � TIU(n) = {S ∈ C

n×n|S = −S
H}.
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Fig. 1. The SD algorithm takes ninety-degree turns at every iteration,
i.e., 〈−G̃k+1, −τG̃k〉Wk+1

= 0, where τ denotes the parallelism
w.r.t. the geodesic connectingWk andWk+1.

2.1.2. Riemannian metric and gradient on U(n)

The gradient vector can only be defined after endowing U(n) with
a Riemannian metric. The inner product given by 〈X,Y〉

W
=

1

2
�

˘
trace{XY

H}
¯
,X,Y ∈ TWU(n) induces a bi-invariant met-

ric on U(n). Therefore, the right (and also the left) translation pre-
serves the inner product, i.e., 〈X,Y〉

W
= 〈XV,YV〉

WV
, ∀V ∈

U(n). This property is called isometry, and it is very useful for per-
forming translations of the tangent vectors (gradients and search di-
rections) from a tangent space to another. The Riemannian gradient
at a pointW ∈ U(n) is:

∇̃J(W) � Γ
W
−WΓ

H

W
W, (1)

where Γ
W

= dJ
dW∗

(W) is the gradient of J on the Euclidean space
at a givenW [1].

2.1.3. Geodesics and parallel translation on U(n)

Intuitively, geodesics on a Riemannian manifold are the locally
length minimizing paths. On U(n) they have simple expressions
described by the exponential map. The fact that the right trans-
lation is an isometry enables simple parallel transport of the tan-
gent vectors along geodesics, via matrix multiplication. When
performing the geodesic optimization on U(n), due to computa-
tional reasons it is more convenient to translate all tangent vec-
tors into u(n) whose elements correspond to skew-Hermitian
matrices. Because an isometry maps geodesics into geodesics,
the right multiplication also allows translating geodesics from
one point to another. The geodesic emanating from the iden-
tity element of U(n) in the direction of S ∈ u(n) is given by
GI(t) = exp(tS). Using the right translation, a geodesic emanat-
ing from an arbitrary W ∈ U(n) in the direction SW is given
by GW(t) = exp(tS)W, SW ∈ TWU(n), t ∈ R. Conse-
quently, the tangent direction S ∈ u(n) is transported along the
geodesic toW and the resulting tangent vector is SW ∈ TWU(n).
Conversely, ifX ∈ TWU(n), thenXW

H ∈ u(n).

2.2. Steepest descent algorithm on U(n)

The unitary optimization can be solved in an iterative manner, by
using a steepest descent algorithm along geodesics on U(n). The
corresponding rotational update at iteration k is given by:

Wk+1 = exp(−μkGk)Wk, k = 0, 1, . . . (2)

whereGk� ∇̃J(W)WH =Γ
W

W
H
k −WkΓ

H
W
∈ u(n) is the Rie-

mannian gradient of J (W) atWk translated to the group identity,
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Fig. 2. The CG takes a search direction −H̃k+1 at Wk+1 which
is a combination of the new SD direction −G̃k+1 at Wk+1 and
the current search direction −H̃k translated to Wk+1 along the
geodesic connecting Wk and Wk+1. The new Riemannian steep-
est descent direction −G̃k+1 at Wk+1 will be orthogonal to the
current search direction −Hk at Wk translated to Wk+1, i.e.,
〈−G̃k+1, −τH̃k〉Wk+1

= 0.

1 Initialization: k = 0 ,Wk = I

2 Compute the Riemannian gradient directionGk:
Γk = ∂J

∂W∗
(Wk), Gk = ΓkW

H
k −WkΓ

H
k

3 Evaluate 〈Gk,Gk〉I = (1/2)trace{GH
k Gk}. If it is suffi-

ciently small, then stop
4 Determine μk = arg minμ J (exp(−μGk)Wk)
5 Update: Wk+1=exp(−μkGk)Wk

6 k :=k + 1 and go to step 2

Table 1. Steepest descent (SD) algorithm along geodesics on U(n)

and Γ
W

= ∂J
∂W∗

(Wk) is the Euclidean gradient at Wk . The nota-
tion exp(·) stands for the matrix exponential. The rotational update
(2) maintainsWk+1 unitary at each iteration. The step size μk > 0
controls the convergence speed and needs to be computed at each it-
eration. In [1], Armijo step size rule [7] is efficiently used. The step
size evolves in a dyadic basis. Therefore, when doubling the step
size, only a matrix squaring is needed instead of computing a new
matrix exponential. In this way the complexity is reduced approxi-
mately by half [1], compared to the SD in [5] using also the Armijo
rule. Other approaches from the Euclidean space [7] may also be
adapted. The proposed SD algorithm is summarized in Table 1.

2.3. Conjugate gradient algorithm on U(n)

The Conjugate Gradient (CG) algorithm provides typically faster
convergence compared to the Steepest Descent (SD) algorithm not
only on the Euclidean space, but also on Riemannian manifolds.
This is due to the fact that the Riemannian SD algorithm suffers
from the same deficiency as its Euclidean counterpart, i.e., it takes
ninety degree turns at each iteration [3]. This fact is illustrated in
the left plot of Figure 1 by plotting the cost function level sets on
the manifold surface. The conjugate gradient algorithm may signifi-
cantly reduce this drawback. Moreover, CG provides an inexpensive
alternative to Newton algorithm. The new search direction is cho-
sen to be a combination of the current search direction at Wk and
the gradient at the next point Wk+1, as illustrated in Figure 2. The
difference compared to the Euclidean space is that the two vectors
lie in different tangent spaces. For this reason they are not directly
compatible. The fact that U(n) is a Lie group enables simple par-
allel translation of tangent vectors from a tangent space to another.
It is desirable to translate all the tangent directions (steepest descent
and search directions) to the same tangent space. Due to compu-
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1 Initialization: k = 0 ,Wk = I

2 Compute the Riemannian gradient direction Gk and the search
directionHk:
if (k modulo n2) == 0

Γk = ∂J
∂W∗

(Wk)

Gk = ΓkW
H
k −WkΓ

H
k

Hk := Gk

else
Gk := Gk+1

Hk := Hk+1

3 Evaluate 〈Gk,Gk〉I = (1/2)trace{GH
k Gk}. If it is suffi-

ciently small, then stop
4 Determine μk = arg minμ J (exp(−μHk)Wk)
5 Update: Wk+1 = exp(−μkHk)Wk

6 Compute the Riemannian gradient direction Gk+1 and the
search directionHk+1:

Γk+1 = ∂J
∂W∗

(Wk+1)

Gk+1 = Γk+1W
H
k+1 −Wk+1Γ

H
k+1

γk =
〈Gk+1−Gk,Gk+1〉I

〈Gk,Gk〉
I

Hk+1 = Gk+1 + γkHk

7 k := k + 1 and go to step 2

Table 2. Conjugate gradient algorithm along geodesics on U(n)
using the Polak-Ribièrre formula (CG-PR)

tational reasons, the tangent space at the group identity element is
preferred [6]. Then, all the tangent vectors belong to the Lie al-
gebra u(n) and they are represented by skew-Hermitian matrices.
The computation of the exponential of skew-Hermitian matrices and
its approximations have been thoroughly studied in the literature,
see [1]. The new search direction translated into u(n) is

Hk+1 = Gk+1 + γkHk, Hk,Hk+1, Gk+1 ∈ u(n) (3)

where Hk is the old search direction at Wk, translated into u(n).
The weighting factor γk may be determined for example, by using
the Polak-Ribièrre formula γk = 〈Gk+1 −Gk,Gk+1〉I/〈Gk,Gk〉I
[3]. The conjugate gradient step is taken along the geodesic emanat-
ing fromWk in the direction −H̃k = −HkWk, i.e.,

Wk+1 = exp(−μkHk)Wk, k = 0, 1, . . . . (4)

Analogous to the Euclidean CG, it is desirable to reset the search
direction −Hk to the gradient direction −Gk after each n2 steps,
which is the dimension of U(n). This may enhance the conver-
gence speed. The proposed CG algorithm on U(n) using the Polak-
Ribièrre formula is summarized in Table 2.

Remarks: The SD algorithm in Table 1 is designed to minimize
a cost function. It may converted into a steepest ascent (SA) algo-
rithm for solving maximization problems, by changing the update
step 5 intoWk+1 = exp(+μkHk)Wk. The same change needs to
be applied to the CG-PR in Table 2, step 5, in order to solve max-
imization problems. Additionally, the step 4 in Table 2 needs to be
replaced by μk = arg maxμ J (exp(+μHk)Wk).

3. SIMULATION RESULTS AND APPLICATIONS

In this section we test the proposed Riemannian algorithms on two
different optimization problems on U(n). The first one is a classical
test function for optimization under orthogonal matrix constraint [3].
The second one is the JADE cost function [8] which is a practical
application of the proposed algorithms to blind source separation.
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Fig. 3. Comparison between different SA (steepest ascent) and CG
algorithms: the geodesic SA obtained for the SD in Table 1, the non-
geodesic SA as in [5] and the CG-PR algorithm given in Table 2,
which uses the Polak-Ribièrre formula (CG-PR). The geodesic and
the non-geodesic SA algorithms perform the same, but the geodesic
SA algorithm has lower complexity. The CG provides faster conver-
gence compared to the geodesic SA at comparable complexity.

3.1. Diagonalization of a Hermitian Matrix

The diagonalization of a Hermitian matrix Σ can be achieved by
maximizing the Brockett criterion [3]

JB(W) = tr{WH
ΣWN}, subject to W ∈ U(n). (5)

The matrix W converges to the eigenvectors of Σ sorted accord-
ing to the ascending order of the eigenvalues, provided that N is a
diagonal matrix with the diagonal elements 1, . . . , n. This type of
optimization problem arises in many signal processing applications
such as blind source separation, subspace estimation, high resolution
direction finding as well as in communications applications. This
example of computing the eigenvectors of a Hermitian matrix (such
as a covariance matrix) is chosen for illustrative purposes since it is
well known by most of the readers. A more practical application is
the blind source separation problem is considered in Subsection 3.2.
The Euclidean gradient of the Brockett function is ΓW = ΣWN.
The performance is studied in terms of convergence speed consid-
ering a diagonality criterion, Δ, and in terms of deviation from the
unitary constraint using a unitarity criterion Ω, defined as

Δ = 10 lg
off{WH

ΣW}

diag{WHΣW}
, Ω = 10 lg ‖WW

H − I‖2F , (6)

where off{·} operator computes the sum of the squared magnitudes
of the off-diagonal elements of a matrix, and diag{·} does the same
operation, but for the off-diagonal ones. The diagonality criterion
measures the departure of the matrix W

H
ΣW from the diagonal

property, in logarithmic scale. The unitarity criterion is the squared
Frobenius norm of the deviation from the unitarity property in a loga-
rithmic scale. The results are averaged over 100 random realizations
of the 6× 6 Hermitian matrix Σ. In order to maximize the criterion
(5), the SD in Table 1 and CG-PR in Table 2 need minor modifica-
tions (see Remarks at the end of Subsection 2.3). In Figure 3, we
compare three algorithms. The first one is the geodesic steepest as-
cent (SA) obtained from the SD in Table 1. The second algorithm
is the non-geodesic SA obtained from SD in [5]. The third one is
the CG algorithm in Table 2 which uses the Polak-Ribièrre formula
(CG-PR). The step size for all three algorithms is chosen by using
the Armijo rule [7] as in [1]. In the left plot of Figure 3 we observe
that the geodesic and the non-geodesic SA algorithms perform the
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same, but the geodesic SA algorithm has lower complexity, espe-
cially when Armijo step is used [1]. The CG-PR algorithm outper-
forms both the geodesic and the non-geodesic SA algorithms, with
comparable computational complexity. In terms of satisfying the
unitary constraint, all algorithms provide good performance as it is
shown in the right subplot of Figure 3.

3.2. Joint Approximate Diagonalization of a set of Hermitian
Matrices. Minimizing the JADE criterion on U(m)

In this subsection we test the proposed SD and CG algorithms in
a practical application of blind source separation (BSS) of commu-
nication signals by using a joint diagonalization approach [8]. We
show that the proposed algorithms outperform the classical JADE
algorithm [8]. A number of m = 20 independent 16-QAM sig-
nals are separated blindly from their r = 20 mixtures. A total of
N = 15000 snapshots are collected and the results are averaged
over 100 independent realizations of the r×mmixture matrix. The
signal-to-noise-ratio is 20dB. The blind recovery of the desired sig-
nals is based on statistical properties and it is done in two stages. The
first one is a whitening operation, which can be done by diagonaliz-
ing the sample covariance matrix as in Subsection 3.1. The second
stage is the joint diagonalization of a set of eigenmatrices M̂i which
are estimated from the fourth order cumulants of the whitened sig-
nals. In [8], this is done by using Givens rotations. In this paper we
find the unitary rotation by minimizing the JADE criterion [8] which
penalizes the deviation of eigen-matrices from the diagonal property.

JJADE(W) =
mX

i=1

off{WH
M̂iW} subject to W ∈ U(n). (7)

The gradient of the JADE cost function on the Euclidean space is
ΓW = 2

Pm

i=1
M̂iW

ˆ
W

H
M̂iW − I	 (WH

M̂iW)
˜
, where 	

denotes the elementwise matrix multiplication.
In Figure 4 we compare the classical JADE algorithm to the pro-

posed SD and CG algorithms on U(m). The performance measure
for the optimization problem is the JADE criterion (7). The per-
formance index used for the entire blind separation problem is the
Amari distance. The geodesic SD and the CG-PR algorithm have
similar convergence speed and they outperform the classical JADE
algorithm [8]. The non-geodesic SD [5] (not shown in Figure 4)
performs the same as the geodesic SD. The geodesic algorithms on
U(m) take benefit of the Lie group properties of U(m) in order to
reduce complexity. The proposed SD and CG-PR algorithms have
complexity of O(m3) per iteration and only few iterations are re-
quired to achieve convergence. Moreover, the number of iterations
needed to achieve convergence stays almost constant when increas-
ing m. The Givens rotation approach in [8] has a total complexity
of O(m4), since it updates not only the unitary rotation matrix, but
also the full set of eigen-matricesMi. Therefore, the total complex-
ity of the proposed algorithms is lower, especially when the number
of signals m is very large. The proposed algorithms converge faster
at similar computational cost/per iteration. Therefore, they are suit-
able for blind separation applications, especially when the number
of signals to be separated is large.

4. CONCLUSIONS

In this paper, Riemannian steepest descent and conjugate gradient al-
gorithms for optimization under unitary matrix constraint were pro-
posed. They operate on the Lie group of n×n unitary matrices and it
exploits the geometrical properties of U(n), such as simple geodesic
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Fig. 4. The classical JADE algorithm [8] vs. SD and CG algorithms
onU(20): the geodesic SD in Table 1 and the CG-PR in Table 2. The
geodesic SD and the CG-PR algorithm perform similarly in terms of
JADE criterion and Amari distance. They outperform the classical
JADE algorithm [8], especially when the number of signal sources is
large. In this application the CG did not improve convergence speed
of the SD.

formulas and parallel transport in order to reduce the complexity.
For this reason their complexity is lower than the non-geodesic SD
in [5] at the same convergence speed. The algorithms provide a re-
liable solution to the joint diagonalization problem for blind separa-
tion and outperforms the widely used Givens rotations approach, i.e.,
in the classical JADE algorithm [8]. It may be applied, for example,
to smart antenna algorithms, wireless communications, biomedical
measurements, signal separation, subspace estimation and tracking
tasks where unitary matrices play an important role in general.
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