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ABSTRACT

In many signal processing algorithms the estimation of signal co-
variance matrices is a key task. In many applications using tensor
representation for the signals provides significant benefits in deriv-
ing new algorithms and revealing interesting signal properties. It is
natural to model many signals in MIMO communications, physics,
principal component analysis, or medical imaging using tensors. It
is of high interest to develop signal processing algorithms for such
problems. For some tensor-valued signals the covariance matrix
may be approximated by a structured covariance with a Kronecker-
product structure. This type of signals are referred to as separable.
When the observed signals are contaminated by additive Gaussian
noise, the separability property is lost and one ends up with shifted
Kronecker-structured covariance matrices. In this paper, an itera-
tive Maximum Likelihood (ML) estimator for covariance matrices
of tensor-valued signals where covariance matrices have a shifted
Kronecker-structure is proposed. The proposed algorithm is applied
to wideband MIMO channel sounding measurements needed in re-
alistic MIMO channel modeling.

Index Terms— Tensor, Stochastic Signals, Maximum Likeli-
hood Estimation, Channel Estimation, Covariance Matrix

1. INTRODUCTION

Statistical methods to analyze vector-valued random variables are
well established. Recently the analysis of tensor-valued signals has
attracted a lot of interest, see e.g. the articles in [1]. But how does
one characterize tensor-valued random variables?

A lot of research has been focused on the estimation of first or-
der moments of tensor-valued signals. Many techniques for tensor-
valued signal analysis using tensor decompositions like PARAFAC
(Parallel Factor Model) [2], HOSVD (Higher Order SVD) [3], or
PACA (PARAFAC/CANDECOMP) [4] has been developed [1, 5].

Yet, there are only few papers on the second order statistics of
tensor valued signals. In general the second order statistics of a
N -dimensional tensor-valued random variable has to be represented
by a 2N -dimensional tensor. Fortunately, the covariance matrix of
tensor-valued signals may have a structure, which is related to the
underlying physical problem. This leads to a constrained covariance
model with significantly lower dimensionality [1] (pp. 220-236), [6].

This work is focused on the estimation of covariance matrices
of separable stochastic processes [7]. For example, the model used
to describe sampled wideband MIMO radio channels consists of
two components. One component is a superposition of dominant
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specular-like propagation paths S(θp), having deterministic parame-
ters θp. Another component is so called dense-multipath (distributed
scattering), modeled as a separable stochastic process. Let M1, M2,
M3, denote the number of frequency samples, number of transmit
antennas, and number of receive antennas. Then, a realization of the
wideband MIMO radio channel is assumed to be distributed accord-
ing to

∼ CN (vec {S(θp)} ,Rd(θd)) ∈ C
M1×M2×M3 (1)

where

Rd(θd) = Rf (θd)⊗RT (θd)⊗RR (θd) ,

and Rf (θd) ∈ CM1×M1 , RT (θd) ∈ CM2×M2 , and RR (θd) ∈
CM3×M3 are covariance matrices describing the distribution of
dense-multipath in frequency domain, at the transmit-antenna ports,
and the receive-antenna ports. The objective is to obtain an unstruc-

tured estimate of these covariance matrices (R̂f , R̂T , R̂R) or, if a
model for the respective covariance matrix is available, an structured

(constrained) estimate θ̂d.

The estimation of the parameters of the specular component
(S(θp)) in (1) is not considered in this paper. Appropriate al-
gorithms as well as in depth discussion of the wideband MIMO
channel model can be found in e.g. [8, 9].

Since an observation of the radio channel is always contami-
nated by additive white Gaussian (AWGN) receiver noise having
variance σ2, an observation of the wideband MIMO radio channel
is distributed as

∼ CN `
vec {S(θp)} ,Rd(θd) + σ2I

´
.

The AWGN can not be neglected in physical sensory measurements
made in channel sounding, radio communications or in any applica-
tion. In case of tensor-valued signals, it makes the estimation prob-
lem challenging since the convenient separability property is lost and
the covariance matrix will have a shifted Kronecker structure. Con-
sequently, the algorithms developed for separable signals can not be
applied, except in the case of high SNR. In this paper, a Maximum
Likelihood (ML) estimator of the covariance matrix with a shifted
Kronecker-structure is proposed. An iterative algorithm for optimiz-
ing the likelihood function is introduced.

The paper is structured as follows. In Section 2, the data model
employed in deriving the new estimator is summarized. In Sec-
tion 3, a new covariance matrix estimator for the shifted Kronecker-
structure case based on the ML-criterion is derived. An iterative al-
gorithm for optimizing the likelihood function is presented. In Sec-
tion 4, estimation examples from wideband MIMO channel mea-
surements needed for channel modeling are provided. Finally, in
Section 5, a summary of the paper is given.
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2. DATA MODEL

Suppose the observed signal is represented using a tensor structured
model Y ∈ CM1×M2×M3 . In this paper, it is assumed the signal is
complex circular Gaussian distributed, i.e., the1

vec {Y} ∼ CN (0,R3 (θ)⊗R2 (θ)⊗R1 (θ)) . (2)

Furthermore, it is assumed that there is also additive complex sec-
ond order circular Gaussian observation noise N ∈ CM1×M2×M3

present (3), which is independent of Y.

vec {N} ∼ CN `
0, σ2I

´
. (3)

An observation X ∈ CM1×M2×M3 , is a superposition of the two
signals, X = Y + N, and is distributed as

vec {X} = x ∼ CN (0,R (θ)) ,with (4)

R (θ) = R3 (θ)⊗R2 (θ)⊗R1 (θ) + σ2I. (5)

See also Fig. 1 for a visualization of the signal model. The focus of
this paper is on the estimation of the second order statistics of this
signal, i.e. the structured covariance matrix (5). An estimator of
R(θ) in (5), based on the ML-criteria, is derived in the following.

3. MAXIMUM LIKELIHOOD ESTIMATION

The model introduced in the previous section cannot be identified
unambiguously, since

R (θ) = R3 (θ)⊗R2 (θ)⊗R1 (θ)

= (aR3 (θ))⊗ (bR2 (θ))⊗ (
1

ab
R1 (θ)), ∀a, b ∈ C

= R′
3 (θ)⊗R′

2 (θ)⊗R′
1 (θ) ,

where both sets of covariance matrices R1 (θ), R2 (θ), R3 (θ) and
R′

1 (θ), R′
2 (θ), R′

3 (θ) are valid Kronecker-factorizations of the
covariance matrix R (θ). Therefore, a constraint has to be imposed
on two of the three covariance matrices R1 (θ), R2 (θ), and R3 (θ)
in order to ensure identifiability. A reasonable constraint is the trace
of the covariance matrices. A natural choice for the constraints is
trace (R2 (θ)) = M2 and trace (R3 (θ)) = M3.

Altogether, the probability density function of an observation
given the parameters θ is

p (x| θ) = |πR (θ)|−1 e
−trace

“
xHR−1(θ)x

”
. (6)

In the following section a MLE is derived to estimated the compo-
nents of R(θ).

3.1. Algorithm Outline

The log-likelihood function of (6) dropping constant terms is

L (x|θ) = − log(|R (θ)|)− trace
˘
xHR−1 (θ)x

¯
. (7)

Note that in contrast to separable processes, log(|R (θ)|) cannot be

separated into M
P3

i=1(M
−1
i log(|Ri (θ)|)), with M =

QM
i=1 Mi

due to the shifted Kronecker-structure in (5). A closed form solution
of the MLE problem

θ̂ = arg max
θ

L (x|θ) (8)

1The symbol ⊗ denotes the Kronecker product and vec{•} the vector
operator, which stacks the elements of a tensor into a vector beginning with
the lowest dimension of the tensor, see e.g. [10].

Fig. 1. Tensor Signal Model: The observed signal is a superposition
of two tensor valued signals. The observed signal (lhs) is first col-
ored in the three dimensions by the singular values (13) of the related
covariance matrices Ri. In the next step this signal is combined with
the i.i.d. measurement noise (rhs) scaled by the standard deviation σ,
and in the last step a correlation is introduced in the three dimensions
by the eigenvectors Ui of the related covariance matrices (9).

is, to the best knowledge of the authors, not available. Therefore, an
iterative MLE is proposed in the next section.

For notational convenience the dependencies on the parameter
vector θ is dropped for the moment. In the description of the pro-
posed algorithm the following definitions are used

R̂i = ÛiΛ̂iÛ
H

i (9)

Λ̂ = Λ̂3 ⊗ Λ̂2 ⊗ Λ̂1 + σ̂2I (10)

ι̂ = diag{Λ̂−1} (11)

λ̂i = diag{Λ̂i} (12)

ŝi = diag{Λ̂
1
2
i }. (13)

The symbols � and � denote element-wise multiplication and
element-wise division, respectively. Furthermore, the operator
vec {•} is used to reshape a tensor into a vector, and the opera-
tor mat {•,M,N} reshapes a vector into a matrix of dimensions
M ×N .

3.2. Iterative Maximum Likelihood Estimation

The proposed algorithm is based on the iterative ML technique [11].
Let I(θ) be the Fisher Information matrix for the parameter-
vector and θ and q(θ|X) the score-function (gradient of the Log-
Likelihood function) given the data X, at point θ. Then an iterative
algorithm to maximize the log-likelihood function is given by

θ{k+1} = θ{k} + μΔθ{k},

with the Gauss-Newton-type update

Δθ{k} = I−1(θ{k})q(θ{k}|X). (14)

One should note that the full Fisher Information matrix for the prob-
lem at hand may have large dimensions. In MIMO radio chan-
nel sounding applications the dimensions of the tensor are typically
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M1 = 8 . . . 400, M2 = 8 . . . 400, and M3 = 100 . . . 4000. The
measurement data acquired by the authors have, e.g. dimensions
of M1 = 16,M2 = 16,M3 = 193. As an example, this pa-
rameterization leads to a Fisher information matrix of dimensions
≈ 37000 × 37000, since in the unconstrained case each covariance
matrix Ri is parameterized by M2

i real-valued parameters. Conse-
quently, the direct implementation of (14) is not feasible.

In order to reduce the dimensionality of the Hessian, it may be
approximated by a block diagonal matrix. To this end the correlation
between parameters of different covariance matrices Ri,Rl, ∀i 	=
l, i, l = 1, 2, 3 as well as the observation noise variance σ2 is ne-
glected in the Fisher Information matrix. With this approach, the
update (14) can be broken down into four separate updates, i.e., the
individual updates of Ri, i = 1, 2, 3 and an update of σ.

Due to the limited space available, the derivation of the expres-
sions for the score-function as well as the approximation of the Hes-
sian are omitted in this paper. In the following, only the final expres-

sions to compute the updates ΔR
{k}
i , i = 1, 2, 3, and Δσ{k} are

given. For notational convenience the dependency on the iteration k
is dropped in the following expressions, i.e. all quantities except x
are understood as dependent on k.

x̃ = ι̂ �
“
(Û3 ⊗ Û2 ⊗ Û1)

Hvec {X}
”

(15)

Y1 = mat{x̃,M1,M2M3} �
“
1 (ŝ3 ⊗ ŝ2)

T
”

(16)

q1 = mat{ι̂,M1,M2M3}
“
λ̂3 ⊗ λ̂2

”
(17)

D1 = mat{ι̂,M1,M2M3} �
“
1(λ̂3 ⊗ λ̂2)

T
”

(18)

ΔE1 =
“
Y1Y

H
1 − diag {q1}

”
�

“
D1D

T
1

”
(19)

ΔR1 = Û1ΔE1Û
H

1 (20)

The expressions for ΔR2,ΔR3 follow directly from the expres-
sions for ΔR1 by cyclic permuting the tensor dimensions. Note
that cyclic permutation of the tensor dimensions requires only re-
indexing the values in X, such that Dim. 1 → Dim. 3, Dim. 3 →
Dim. 2, and Dim. 2 → Dim. 1, et cetera.

One should note that the block-diagonal approximation of the
Hessian used, and the chosen parameterization lead to a diagonal
approximation of the Hessian matrix. This reduces the computa-
tional complexity of the algorithm significantly. Instead of solving
a linear system of equations, as it is generally required by (14), an
element-wise division of the gradient (Y1Y

H
1 −diag {q1}) and the

diagonal elements of the approximated Hessian computed by D1D
T
1

are used. The Gauss-Newton step for σ̂ is

Δσ =
“
2σ̂ι̂Tι̂

”−1

ι̂T
“
(x̃� x̃∗)Λ̂− 1

”
. (21)

An iteration of the proposed algorithm consists of the following
steps:

1. Compute the matrices ΔR
{k}
1 , ΔR

{k}
2 , ΔR

{k}
3

(Eqs. (15-20), and Δσ{k} (Eqn. (21)).

2. Update the covariance matrices R
{k}
1 , R

{k}
2 , R

{k}
3 , and σ{k}

using:

R̃
{k+1}
i = R

{k}
i + μΔR

{k}
i , ∀i, i = 1, 2, 3

σ̂{k+1} = σ̂{k} + μΔσ{k}

R̂
{k+1}
1 = R̃

{k+1}
1

R̂
{k+1}
i = R̃

{k+1}
i Mi/trace

“
R̃

{k+1}
i

”
, ∀i, i = 2, 3

with μ ∈ 〈0 · · · 1〉. A step size of μ = 0.7 has proved to
be a good trade-off in simulations and for measured data. It
ensures convergence and has a small impact on the rate of
convergence of the algorithm.

3. Compute the eigenvalue decomposition:

R̂
{k+1}
i = Û

{k+1}
i Λ̂

{k+1}
i (Û

{k+1}
i )H

4. Check algorithm convergence |Δσ{k}|/|σ̂{k+1}| < ε, and

||ΔR
{k}
i ||F /||R̂{k+1}

i ||F < ε, ∀i, i = 1, 2, 3. The algo-
rithm is stopped when the rate of change is below the chosen
threshold ε.

The third step in the algorithm is computationally costly. It requires
a full eigenvalue decomposition of the three updated covariance ma-
trices in each iteration. In the next subsection this step is replaced by
an QR-decomposition based update of the eigenvectors and eigen-
values of the covariance matrices.

3.3. Reduction of Computational Complexity

Considering that the derived algorithm is iterative by design, a
full diagonalization of the intermediate covariance matrices is not
needed, since the diagonality is partially destroyed in the next update

anyway. Note that an update of R̂
{k}
i can also be written as

R̂
{k+1}
i = Û

{k}
i E

{k}
i (Û

{k}
i )H,with (22)

E
{k}
i = Λ̂

{k}
i + μΔE

{k}
i . (23)

Now recalling the QR-decomposition based iterative eigenvalue de-
composition algorithm [12], one can directly update the estimated
eigenvalues and eigenvectors of the estimated covariance matrices

using the QR-decomposition of E
{k}
i . The QR-decomposition (24)

factorizes E
{k}
i into a unitary matrix Q

{k}
i and an upper-triangular

matrix Z
{k}
i . The new update steps are

E
{k}
i = Q

{k}
i Z

{k}
i (24)

Û
{k+1}
i = Û

{k}
i Q

{k}
i

λ̂
{k+1}
i = diag{Z{k}

i (Q
{k}
i )H}.

The resulting algorithm does not need to form the covariance matri-
ces explicitly. Instead, it is updating its eigenvalue decomposition.

3.4. Covariance Matrices with Additional Structure

As mentioned in Section 1 additional information about the struc-
ture of some of the covariance matrices Ri may be available. For
wideband MIMO radio channels exists a model for the frequency
correlation of dense-multipath [8, 13]. The covariance matrix of
diffuse scattering in frequency domain has Toeplitz structure2

R1 (θ1) = toep
`
κ(θ1),κ

H(θ1)
´
, (25)

where

κ(θ1) =
α1

M1

"
1

βd
· · · e−j2π(M1−1)τd

βd + j2πM1−1
M1

#
(26)

models the correlation between samples at different frequencies. The
parameter vector θ1 contains three parameters, the normalized base

2The operator toep(c, r) forms a Toeplitz matrix with the first column c,
and the first row r.
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delay τd ∈ [0, 1), the normalized coherence bandwidth βd, and the
variance of dense multipath αd. The ML-estimator described in [8]

is applied in every iteration to estimate the parameters θ̂
{k+1}
1 from

the unstructured estimate R̂
{k+1}
1 . Then an eigenvalue decomposi-

tion is used to estimate the updated eigenvectors and eigenvalues, i.e.

R̂1(θ
{k+1}
1 ) = Û

{k+1}
i diag{λ{k+1}

1 }
“
Û

{k+1}
i

”H

.

In the next section, the proposed MLE will be applied to wideband
MIMO radio channel sounding measurements.

4. ESTIMATION EXAMPLE

For a description of the measurement setup as well as the measured
scenario see [14]. As discussed in Section 1, a radio channel obser-
vation contains two components, contributions from dominant spec-
ular like propagation path and dense multipath. Therefore, the Ex-
tended Kalman filter based estimator described in [9] has been em-
ployed together with the derived algorithm in order to estimate both

components. The Extended Kalman filter estimates θ̂p, while the

proposed iterative MLE estimates R̂d(θd). Note that the estima-

tors depend on each other. Having estimates, θ̂p and θ̂d one can
first remove the contribution of the estimated dominant propagation

paths from the observations, and then use R̂
1
2
d (θd) to whiten the

remaining signal. Figure 2.(a), and 2.(b) show the transmit-angle-
delay-power spectrum and the receive-angle-delay-power spectrum
before and after whitening.

5. CONCLUSION

In this paper a maximum likelihood estimator has been derived to
estimate the covariance matrix of tensor-valued signal observations
having a shifted Kronecker-structure.

The proposed algorithm is based on iterative MLE. The direct
implementation of the iterative MLE algorithm is not feasible due
to the large dimensionality of the Hessian involved. However, by
exploiting the tensor-structure of the signal an approximation of the
Hessian has been found. This leads to a significant reduction of com-
putational complexity. The general structure of the algorithm allows
to impose additional model constraints on the Kronecker-factors.

The estimator performs well for wideband MIMO radio channel
sounding measurements data (The authors want to thank MEDAV
GmbH and TU Ilmenau for providing the measurement data).
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