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ABSTRACT

In this paper, a new algorithm for robust adaptive beamform-
ing is developed. The basic idea of the proposed algorithm
is to estimate the difference between the actual and presumed
steering vectors and to use this difference to correct the er-
roneous presumed steering vector. The estimation process is
performed iteratively where a quadratic convex optimization
problem is solved at each iteration. Unlike other robust beam-
forming techniques, our algorithm does not assume that the
norm of the mismatch vector is upper bounded, and hence it
does not suffer from the negative effects of over/under esti-
mation of the upper bound. Simulation results show the ef-
fectiveness of the proposed algorithm.

Index Terms— Array signal processing, adaptive arrays,
parameter estimation, robustness, mathematical programming.

1. INTRODUCTION

Adaptive beamforming plays an important role in many appli-
cations such as radar, sonar, speech processing, seismology,
and wireless communications. Conventional adaptive beam-
forming techniques assume that the steering vector associated
with the signal of interest (SOI) is precisely known. How-
ever, in practice the information may not be perfectly known
resulting in a mismatch between the presumed and the ac-
tual steering vectors. Such a mismatch arises due to impre-
cisely known wavefield propagation conditions, imperfectly
calibrated arrays, array perturbations, and/or signal pointing
errors [1], [2].
In order to provide robustness against such mismatches,

several techniques have been recently proposed in the litera-
ture [2]–[5]. These techniques assume that the norm of the
mismatch vector is upper-bounded. In practice, neither the
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mismatch vector nor its upper bound is known. If the up-
per bound is overly estimated, then the aforementioned ro-
bust beamforiming techniques become too conservative. On
the other hand, under estimation of the upper bound may re-
sult in self-nulling of the SOI. In both cases, these techniques
may suffer from performance degradation.
In this paper, we propose a new algorithm for robust adap-

tive beamforming which is based on estimating the difference
between the actual and presumed steering vectors. The esti-
mation process is performed iteratively. A quadratic convex
optimization problem is solved at each iteration. Then, the
presumed steering vector is updated and used to obtain the
beamformer weights using any adaptive beamforming tech-
nique. In our approach we do not assume that the mismatch
vector is upper bounded and, hence, we avoid the need for
estimating the upper bound. Our algorithm shows improve-
ments in performance compared to existing adaptive beam-
forming techniques.

2. ARRAY SIGNAL MODEL

The output of a narrowband adaptive beamformer is given by

y(t) = wHx(t) (1)

where t is the time index, x(t) = [x1(t), . . . , xM (t)]T ∈ CM

is the array observation vector, w = [w1, . . . , wM ]T ∈ CM

is the complex vector of beamforming weights, and (·)T and
(·)H stand for the transpose and Hermitian transpose, respec-
tively. The complex vector of array observation can be written
as

x(t) = xs(t) + xi(t) + n(t) (2)

where xs(t), xi(t), and n(t) are the statistically independent
components of the desired signal, interference, and sensor
noise, respectively. We consider the case of narrowband de-
sired signal that can be written as

xs(t) = s(t)a (3)
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where s(t) is the desired signal waveform and a is the actual
steering vector (actual spatial signature) associated with the
desired signal.

3. BACKGROUND

In the absence of steering vector mismatch, the optimal solu-
tion for the adaptive beamforming problem is given by solv-
ing the following optimization problem [6]

min
w

wHRxw subject to wHa = 1. (4)

The solution to the above optimization problem is given by
the well-known Capon beamformer [6]

wopt =
R−1

x a
aHR−1

x a
. (5)

However, in the presence of any mismatch the above beam-
former is no longer optimal and it might lead to a catastrophic
self-nulling of the desired signal. An elegant approach for
robust adaptive beamforming using worst-case performance
optimization was introduced in [2]. The basic idea of this ap-
proach is to impose a constraint that the absolute value of the
array response is greater or equal to unity for all vectors that
belong to the neighborhood of the presumed vector. This was
formulated in the following optimization problem

min
w

wHRxw subject to min
‖e‖≤ε

|wH(ã + e)| ≥ 1 (6)

where ã is the presumed steering vector and e is the mismatch
vector. The above optimization problem is hard to solve be-
cause it involves an infinite number of nonconvex constraints.
However, it can be transformed into the following convex
second-order cone programming problem [2]

min
w

wHRxw

subject to wH ã ≥ ε‖w‖ + 1. (7)

The above optimization problem can be solved using interior
point methods with a complexity of O(M3.5). However, it is
assumed in (7) that the value of ε is known. Over or under es-
timation of ε leads to performance degradation. Hence, more
work on this problem is required.

4. THE PROPOSED ALGORITHM

In this section, we propose a new robust adaptive beamform-
ing algorithm which makes use of sequential quadratic pro-
gramming. Our algorithm is based on estimating the mis-
match vector and it allows forming the beam using the cor-
rected steering vector.
Recall that the power spectrum of the Capon beamformer

(as a function of the array response vector) is given by [6]

P (a) =
1

aR−1
x a

. (8)

Due to the mismatch between the actual steering vector a
and the presumed steering vector ã, we have P (ã) ≤ P (a)
which means that the error vector can be estimated by maxi-
mizing P (ã + e). Equivalently, the mismatch vector can be
estimated via minimizing the denominator of (8). Hence, the
mismatch vector can be obtained by solving the following op-
timization problem

min
e

(ã + e)HR−1
x (ã + e)

subject to (ã + e)HP⊥
a = 0

‖ã + e‖ =
√

M (9)

where P⊥
a is a projection matrix onto a subspace that is or-

thogonal to the actual steering vector a. The first constraint in
(9) is used to prevent the corrected steering vector from con-
verging to a steering vector associated with interfering sig-
nals. Therefore, imposing this constraint enforces the cor-
rected steering vector to remain in the vicinity of the pre-
sumed steering vector. For this purpose, we build two or-
thogonal subspaces. The first subspace contains the steering
vector associated with the desired signal while the other sub-
space contains all steering vectors associated with interfering
signals. Towards this end, we build a positive definite matrix

C �
∫

Θ

c(θ)cH(θ) dθ (10)

where c(θ) is a steering vector that is associated with a hy-
pothetical source that originates at the array from direction θ
and Θ = [θ1 θ2] is a spatial sector that represents the range of
the angular location of SOI1. We assume that Θ is centered at
the presumed direction of arrival (DOA) of SOI and, hence, it
can be estimated at the same stage where the presumed DOA
is estimated. Then, we form the column orthogonal matrix

U � [u1,u2, . . . ,uK ] (11)

where {uk}K
k=1 are K principal eigenvectors of C. In (11),

K is the number of dominant eigenvalues ofC. By definition,
the actual steering vector a belongs to the subspace spanned
by the columns of U. Hence, the projection matrix P⊥

a can
be found as

P⊥
a = I − UUH . (12)

It is also natural to impose the equality constraint in (9)
in order to force the updated steering vector to have the same
norm as the presumed and the actual steering vectors. How-
ever, this equality constraint represents a non-convex set. There-
fore, the optimization problem (9) is not convex, and hence
it is not easy to solve in a computationally efficient manner.
In the following subsection, we propose an iterative solution
for (9) where the equality constraint is relaxed and the non-
convex problem is transformed into a convex one.

1The sector Θ is assumed to be distinguishable from the general angular
locations of all interfering signals.
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4.1. Sequential Quadratic Programming Based Implemen-
tation

The mismatch vector e consists of two components, one is or-
thogonal to the presumed vector ã and the other one is parallel
to it. One meaningful approach for estimating e is to search
for the orthogonal component and to add it to the presumed
steering vector to get an updated version of it. The updated
version of the presumed steering vector is then scaled so that
it has a

√
M norm. Then, the component of the mismatch

vector that is orthogonal to the updated version of the pre-
sumed steering vector can be obtained and used to update the
presumed steering vector again. These iterations are repeated
until the algorithm converges. The process of iterative search-
ing, updating, and scaling is illustrated in Figure 1.
Using the notation e⊥ for the component of e that is or-

thogonal to ã, the optimization problem (9) can be reformu-
lated as follows

min
e⊥

(ã + e⊥)HR−1
x (ã + e⊥)

subject to (ã + e⊥)HP⊥
a = 0

‖ã + e⊥‖ ≤
√

M

ãHe⊥ = 0 (13)

where the orthogonality between e and ã is imposed by the
additional constraint. Note that in the above optimization
problem, the equality in the second constraint is replaced with
an inequality. This relaxation does not change the optimiza-
tion problem because ‖ã + e⊥‖ ≥ ‖ã‖ =

√
M , and the only

value for e⊥ that satisfies this constraint is zero because the
norm of ã is equal to

√
M . We can also relax the upper bound

on the second constraint in (13) by adding a small number δ
(the value of δ is of user choice) to the right hand side of the
constraint in order to allow a space for the algorithm to search
for e⊥. Hence, the optimization problem (13) can be modified
as

min
e⊥

(ã + e⊥)HR−1
x (ã + e⊥)

subject to (ã + e⊥)HP⊥
a = 0

‖ã + e⊥‖ ≤
√

M + δ

ãHe⊥ = 0. (14)

The optimization problem (14) is a convex quadratic program-
ming problem that can be efficiently solved using interior
point methods. After the value of the orthogonal component
that minimizes the objective function of (14) is found, the up-
dated steering vector can be projected to the sphere again, i.e.,
the norm of the updated steering vector can be scaled back to
the value of

√
M . It is worth mentioning that the value of δ

does not affect the value of the final solution, but rather it af-
fects the convergence rate. Specifically, if a small value of δ
is used, the number of iterations required for the algorithm to
converge will be very large. On the other hand, if the value of

δ is chosen to be large, then the number of iterations required
for the algorithm to converge will be small.
The proposed algorithm is summarized as follows:

Step 1: Estimate e⊥ by solving (14).

Step 2: If e⊥HR−1
x e⊥ + 2�{ãHR−1

x e⊥} ≥ −10−3, go to
Step 5, where �{·} stands for the real part. This con-
dition interrupts the algorithm if the inequality (ã +
e⊥)HR−1

x (ã + e⊥) ≤ ãHR−1
x ã is not satisfied, i.e.,

if the objective function of (14) is not reduced at the
current iteration.

Step 3: Update the presumed steering vector by setting
ã = ã + e⊥.

Step 4: Set ã =
√

M ã
‖ã‖ , then go to Step 1.

Step 5: Calculate the robust adaptive beamformer weights as

wSQP =
R̂−1

x ã
ãHR−1

x ã
.

First
iteration

Last
iteration

Fig. 1. Convergence trajectory of the SQP based robust adap-
tive beamforming algorithm.

5. SIMULATION RESULTS

In our simulations, we assume a uniform linear array ofM =
10 omnidirectional sensors spaced half a wave length apart.
The additive noise is modeled as a complex Gaussian zero-
mean spatially and temporally white process that has identical
variances in each array sensor. We assume two interfering
sources with plane wavefronts and directions of arrival −50◦

and−20◦, respectively. The interference-to-noise ratio (INR)
in a single sensor is equal to 30 dB. The desired signal is
assumed to be a plane-wave that impinges on the array from
direction θ = 5◦. The sample covariance matrix is computed
based onN = 1000 data snapshots. All results are calculated
based on 200 independent simulation runs.
In all examples, the proposed beamforming algorithm is

compared to the the sample matrix inversion (SMI) beam-
former and to the robust adaptive beamformer of [2] in terms
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Fig. 2. Output SINR versus SNR; first example.

of the output signal-to-noise-plus-interference ratio (SINR)
versus SNR. The method of [2] is referred to as the second-
order cone (SOC) robust beamformer. In the proposed al-
gorithm, the general angular location of the desired signal is
assumed to be within the interval Θ = [0◦ 10◦] and the value
δ = 0.1 is used. The number of dominant eigenvalues of the
matrix C is taken to be equal to 4. The SeDuMi MATLAB
toolbox is used to solve (14) and to compute the weight vector
of the SOC robust beamformer. The proposed algorithm has
always converged in all of our numerical experiments.

In the first example, we assume a look direction mismatch
of 3◦, i.e., the presumed steering vector is calculated at θ =
8◦. Two different values of ε = {0.1M, 0.3M} are used in
the SOC beamformer. The first value is an under estimate of
ε while the second value equals the exact norm of the mis-
match vector. The performance of all methods is shown in
Fig. 2 which depicts that the proposed algorithm has better
performance compared to other beamformers tested.

In the second example, we consider both random sensor
position errors and random look direction mismatch. Each
sensor is assumed to be randomly displaced from its original
location and the displacement is drawn uniformly from the set
[−0.1, 0.1] measured in wavelength. Also, the look direction
mismatch is assumed to be random and uniformly distributed
in [−4◦, 4◦]. The SOC beamformer is again computed for
ε = 0.1M and for ε = 0.3M . Note that the exact norm of
the error vector changes from one simulation run to another.
Hence, neither the value of ε = 0.1M nor the value of ε =
0.3M is an ideal choice. The performance of all methods is
shown in Fig. 3. It is clear from the figure that the proposed
method outperforms other techniques.
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Fig. 3. Output SINR versus SNR; second example.

6. CONCLUSIONS

A new algorithm for robust adaptive beamforming that esti-
mates the difference between the actual and presumed steer-
ing vectors has been developed. The estimation process has
been performed iteratively where a quadratic convex optimiza-
tion problem is solved at each iteration in order to update the
presumed steering vector. The corrected steering vector has
been used to obtain the beamformer weights. The proposed
algorithm does not assume that the norm of the mismatch vec-
tor is upper bounded, and hence it does not suffer from the
negative effects of over/under estimation of the upper bound.
The effectiveness of the proposed algorithm has been shown
using simulation results.
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