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ABSTRACT
In this paper, we develop an improved approach to the worst-

case robust adaptive beamforming for general-rank signal mo-

dels by means of taking into account the positive semi-definite

constraint for the mismatched signal covariance matrix. The

resulting robust adaptive beamforming problem is solved in

an iterative way using semi-definite programming (SDP) at

each iteration. Simulation results show that the proposed tech-

nique achieves a substantially improved performance as com-

pared to the current robust adaptive beamforming techniques

developed for the general-rank signal environments.

Index Terms— Robust adaptive beamforming, semi-de-

finite programming, worst-case performance optimization

1. INTRODUCTION

Robust adaptive beamforming has recently gained a signifi-

cant interest in the literature; see [1]-[7] and references there-

in. Although in most of papers on this subject rank-one signal

models are assumed, general-rank signal models are of signif-

icant interest as they are often encountered in radio commu-

nications and sonar where the signal sources can be dispersed

in angle because of propagation effects [1], [3], [8]-[11].

In [3], a worst-case optimization based minimum variance

(MV) robust adaptive beamformer has been proposed for the

general-rank signal case. This beamformer is based on the ex-

plicit modelling of uncertainties in the desired signal covari-

ance matrix and in the sample data covariance matrix, and

subsequent worst-case performance optimization. Although

the beamformer of [3] offers a computationally simple closed-

form solution and excellent robustness capability [5], it ig-

nores the positive semi-definiteness (PSD) constraint for the

mismatched signal covariance matrix. As a result, the beam-

former of [3] may be overly conservative in some cases.

In this paper, we propose a new robust MV beamformer

that follows the idea of [3], but also takes into account the

aforementioned PSD constraint. The resulting robust adap-

tive beamforming problem is solved iteratively using semi-

definite programming (SDP) in each iteration. Simulation re-

sults validate substantial improvements offered by the pro-

posed robust beamformer as compared to the technique of [3]

and other popular general-rank beamformers.

2. BACKGROUND

The output of a narrowband beamformer can be written as

y(k) = wHx(k)

where x(k) = [x1(k), · · · , xM (k)]T is the complex array

snapshot vector at time k, w = [w1, · · · , wM ]T is the com-

plex weight vector, M is the number of sensors, and (·)T and

(·)H denote the transpose and Hermitian transpose, respec-

tively. The array snapshot vector can be expressed as

x(k) = s(k) + i(k) + n(k)

where s(k), i(k) and n(k) are the desired signal, interfer-

ence, and noise components, respectively. The optimal weight

vector wopt can be obtained by maximizing the signal-to-

interference-plus-noise-ratio (SINR)

SINR =
wHRsw

wHRi+nw
(1)

where Rs � E{s(k)sH(k)} and Ri+n � E{(i(k) + n(k))
(i(k)+n(k))H} are the M×M signal and interference-plus-

noise covariance matrices, respectively, and E{·} denotes the

statistical expectation. Generally, Rs can be of arbitrary rank,

that is, 1 ≤ rank {Rs} ≤ M . In the particular case of

a point signal source, s(k) = s(k)as and Rs = σ2
sasa

H
s

is rank-one, where s(k) is the zero-mean signal waveform,

σ2
s = E{|s(k)|2} is the variance of s(k), and as is the sig-

nal steering vector. In this particular case, the SINR in (1)

reduces to

SINR =
σ2

s

∣∣wHas

∣∣2

wHRi+nw
. (2)

However, in many practical scenarios rank {Rs} > 1, for ex-

ample, in scenarios with incoherently scattered signal sources
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[9]-[10], or with signals propagating through random inho-

mogeneous media [8], [11].

In both the rank-one and general-rank signal cases, the

optimal weight vector can be obtained by minimizing the out-

put interference-plus-noise power under the distortionless re-

sponse constraint [3]:

min
w

wHRi+nw s.t. wHRsw = 1 (3)

which is equivalent to maximizing the SINR in (1). In prac-

tical scenarios, the exact knowledge of Ri+n is unavailable

because of the presence of the signal component in the train-

ing data snapshots and/or finite observation time. Therefore,

the sample covariance matrix

R̂ =
1
K

K∑

k=1

x(k)xH(k) (4)

is usually used instead of Ri+n, where R � E{x(k)xH(k)}
is the data covariance matrix, and K is the training sample

size [12].

Replacing Ri+n by R̂ in (3) and solving the latter prob-

lem yields the following weight vector [3]

wSMI = P{R̂−1
Rs} (5)

where P {·} denotes the principal eigenvector of a matrix.

The beamformer (5) is commonly referred to as the sample

matrix inversion (SMI) beamformer.

To provide robustness against possible norm-bounded ma-

trix mismatches Δ1 and Δ2 in the matrices Rs and Ri+n,

respectively, the authors of [3] suggested to obtain the beam-

former weight vector via maximizing the worst-case output

SINR. This corresponds to the following optimization prob-

lem:

max
w

min
Δ1, Δ2

wH(Rs + Δ1)w
wH(R̂ + Δ2)w

s.t. ‖Δ1‖ ≤ ε , ‖Δ2‖≤γ (6)

where ‖·‖ is the Frobenius norm of a matrix or the 2-norm of a

vector, and ε and γ are some known bounds on the covariance

matrix errors Δ1 and Δ2.

The solution to the robust MV beamforming problem (6)

can be written as [3]

wrob = P{(R̂ + γI)−1(Rs − εI)} (7)

where I is the identity matrix.

Unfortunately, the problem (6) ignores the PSD constraint

Rs + Δ1 � 0 (8)

which is violated in (7).

3. ROBUST BEAMFORMING WITH PSD
CONSTRAINTS

In this section, we develop an improved, less conservative

variant of the robust worst-case MV beamformer (7) that takes

into account the PSD constraint (8). With this constraint, the

problem (6) can be rewritten as

min
w

max
‖Δ2‖≤γ

wH(R̂ + Δ2)w

s.t. wH(Rs+Δ1)w ≥ 1, Rs+Δ1 � 0 ∀ ‖Δ1‖ ≤ ε (9)

To enforce the PSD constraint, let us model uncertainty in the

“square root” of the signal covariance matrix, Q, rather than

in the signal covariance matrix itself. The matrix Q is defined

through the equation Rs = QHQ. Then, defining Δ as a

norm-bounded mismatch in Q, we can rewrite (9) as

min
w

max
‖Δ2‖≤γ

wH(R̂ + Δ2)w

s.t. min
‖Δ‖≤η

wH(Q + Δ)H(Q + Δ)w ≥ 1 (10)

where η is some known bound on Δ.

To simplify the problem (10), let us first find the solutions

to the following problems:

max
Δ

wH(R̂ + Δ2)w s.t. ‖Δ2‖ ≤ γ (11)

min
Δ
‖(Q + Δ)w‖ s.t. ‖Δ‖ ≤ η (12)

Lemma 1: The solution to (11) is

Δ2∗ = γ
wwH

‖w‖2

and the maximum of the objective function in (11) is

wH(R̂ + γI)w. (13)

Proof: See [3]. �
Lemma 2: If the mismatch is small enough, that is,

η‖w‖ ≤ ‖Qw‖
then the solution to (12) is

Δ∗ = − ηQwwH

‖w‖‖Qw‖
and the minimum of the objective function in (12) is

‖Qw‖ − η‖w‖.
Proof: Using the triangle and Cauchy-Schwarz inequali-

ties along with the constraint ‖Δ‖ ≤ η, we have

‖(Q + Δ)w‖ ≥ ‖Qw‖ − ‖Δw‖
≥ ‖Qw‖ − ‖Δ‖‖w‖
≥ ‖Qw‖ − η‖w‖. (14)
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It is straightforward to verify that if η‖w‖ ≤ ‖Qw‖, then

‖(Q + Δ∗)w‖ = ‖Qw‖ − η‖w‖. (15)

Comparing (14) and (15), we prove Lemma 2. �
Considering the small mismatch case (13) and using the

results of Lemmas 1 and 2, the problem (10) can be simplified

as

min
w

wH(R̂ + γI)w s.t. ‖Qw‖ − η‖w‖ ≥ 1. (16)

The problem in (16) has a non-convex constraint and, there-

fore, is difficult to solve directly. To approximate this problem

by a convex optimization problem, let us rewrite its constraint

as

‖Qw‖2 ≥ (η‖w‖+ 1)2.

The latter constraint can be expressed in the following form:

wHRsw − η2wHw − 1 ≥ 2η‖w‖. (17)

Defining a new variable

W � wwH

we can equivalently rewrite (17) as the following three con-

straints:

tr{RsW } − η2tr{W } − 1 ≥ 2η
√

tr{W }
W � 0, rank{W } = 1 (18)

where we have used the identities wHRsw = tr{RsW }
and wHw = tr{W }. The constraint X � 0 means that X
is symmetric PSD. A standard yet straightforward approach

to get rid of non-convex rank constraints is to drop them from

the optimization problem. This approach is commonly re-

ferred to as semi-definite relaxation. Dropping the rank-one

constraint rank{W } = 1 in (18) and reformulating the objec-

tive function of (16) in terms of W , we obtain the following

problem:

min
W

tr{(R̂ + γI)W }
s.t. tr{RsW } − η2tr{W } − 1 ≥ 2η

√
tr{W }, (19)

W � 0.

However, the first constraint in (19) still remains non-convex

because of the term 2η
√

tr{W } in the right hand side. The-

refore, to solve (19), we resort to an iterative procedure. In the

kth iteration, we find W k by means of solving the following

problem:

min
W

tr{(R̂ + γI)W }
s.t. tr{RsW }−η2tr{W }−1 ≥ 2η

√
tr{Wk−1} , (20)

W � 0

where W k−1 is the solution obtained in the previous (k−1)th
iteration. The problem (20) belongs to the class of SDP prob-

lems and, therefore, is convex for each particular iteration.

The problem (20) can be solved using currently available

highly efficient convex optimization tools such as CVX [15]

or SeDuMi [16]. However, the rank of the solution W ∗ is

usually higher than one and, therefore, the optimal weight

vector cannot be straightforwardly recovered from W ∗. In

such a case, a common approach is to use randomization tech-
niques whose essence is to draw multiple Gaussian random

vectors from NC(0,W ∗) where NC(·, ·) stands for a com-

plex circular multivariate Gaussian distribution. Then, the

“best” solution is selected among such randomly generated

candidates. Because of the randomization procedure, some

of the weight vector candidates may violate the constraint in

(16) and, therefore, they have to be re-scaled to satisfy this

constraint. Finally, the best candidate that satisfies this con-

straint and minimizes the objective function is selected as an

approximate solution to (16).

4. SIMULATION RESULTS

In our simulations, we assume a uniform linear array of M =
20 omnidirectional sensors spaced half a wavelength apart.

The desired signal is always present in the training data cell.

There is a single point-source interferer whose interference-

to-noise-ratio (INR) is equal to 20 dB. The interferer is mod-

elled as a moving source with the time-varying direction-of-

arrival (DOA) θ(k) = −30◦+10◦sin(k/15). The desired sig-

nal is assumed to be an incoherently scattered source with the

Gaussian angular power density whose central angle and the

angular spread are equal to 30◦ and 4◦, respectively. The pre-

sumed shape of the signal angular power density is also Gaus-

sian, but the presumed central angle and the angular spread

are equal to 32◦ and 6◦, respectively. A rectangular sliding

window of K = 50 snapshots is used and a total of 500 slid-

ing windows are used to average the results.

The following general-rank beamformers are compared:

the proposed robust beamformer based on (20), the robust

beamformer of [3], the SMI beamformer (5), and the diag-

onally loaded SMI (LSMI) beamformer [13], [14]. The diag-

onal loading parameter γ = 30 is chosen in our beamformer,

the beamformer of [3], and the LSMI beamformer. The value

of ε = 9σ2
s is chosen for the beamformer of [3], as sug-

gested in [3], where σ2
s is the variance of the desired signal.

In the proposed beamformer, η is chosen to be 0.75
√

tr{Rs},
which appears to be a nearly optimal choice of this parameter.

The CVX Matlab software [15] has been used to implement

the proposed beamformer and about 10 iterations have been

performed to solve (20).

Fig. 1 displays the output SINR versus the signal-to-noise

ratio (SNR) for all the beamformers tested. As can be seen

from this figure, the proposed beamformer has the best per-

formance among the compared techniques. In particular, it
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Fig. 1. Output SINR versus SNR.

outperforms the technique of [3] at high SNR values, and the

achieved SINR improvements are up to 2.5 dB.

5. CONCLUSIONS

A new robust MV beamformer is proposed for general-rank

signal models. Our approach is based on worst-case perfor-

mance optimization and takes into account the PSD constraint

on the mismatched signal covariance matrix. The resulting

robust beamforming problem has been solved iteratively us-

ing SDP in each iteration. The proposed technique is shown

to outperform the approach of [3] that ignores the PSD con-

straint.
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