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ABSTRACT
In array processing, when the available snapshot number

is comparable with or even smaller than the sensor number,
the sample covariance matrix R̂ is a poor estimate of the true
covariance matrixR. To estimateR more accurately, we can
make use of prior environmental knowledge, which is mani-
fested as knowing an a priori covariance matrix R0. In this
paper, we consider both modified general linear combinations
(MGLC) and modified convex combinations (MCC) of the a
priori covariance matrixR0, the sample covariance matrix R̂,
and an identity matrix I to get an enhanced estimate ofR, de-
noted as R̃. Numerical examples are provided to demonstrate
the type of achievable performance by using R̃ instead of R̂
in the standard Capon beamformer.

Index Terms— Knowledge-Aided, Beamforming

1. INTRODUCTION
Let y(n) denote the nth output snapshot of an array compris-
ing of M sensors. In practice, the true array covariance ma-
trixR, whereR = E{y(n)y∗(n)}, with (·)∗ being conjugate
transpose and E(·) denoting the expectation operation, is un-
known, and so it is usually replaced by the sample covariance
matrix R̂, where R̂ = 1

N

∑N
n=1 y(n)y∗(n), withN denoting

the snapshot number. However, when N is comparable with
or even smaller thanM , R̂ usually is a poor estimate ofR.
To obtain an improved estimate of R when the snapshot

number N is limited, we can make use of prior environmen-
tal knowledge. In a knowledge-aided (KA) system, we may
have an initial guess of the true array covariance matrix R,
denoted as R0[1]. When R0 has full rank, we have consid-
ered two shrinkage approaches in [2], called the general linear
combination (GLC) and the convex combination (CC) meth-
ods, as well as a maximum likelihood based approach in [3]
to obtain an improved estimate of R based on R̂ and R0. In
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this paper, we consider the case of R0 being rank deficient.
This case occurs frequently in practice when we only have
prior knowledge on dominant sources or clutter discretes. We
consider both modified general linear combinations (MGLC)
and modified convex combinations (MCC) of the a priori co-
variance matrixR0, the sample covariance matrix R̂, and the
identity matrix I to get an enhanced estimate of R, denoted
as R̃. MGLC and MCC, respectively, are the modifications of
the GLC and CC methods proposed in [2]. Both MGLC and
MCC can be extended to deal with linear combinations of an
arbitrary number of positive semidefinite matrices.

2. PROBLEM FORMULATION
We consider the following modified general linear combina-
tion (MGLC) ofR0, R̂, and I to get a new estimate ofR, let
us call it R̃:

R̃ = AR0 + BR̂ + CI. (1)
We also consider the following modified convex combination
(MCC) of the three terms:

R̃ = AR0 + BR̂ + CI; A + B + C = 1. (2)

Note that the combination weights A, B and C in (1) and (2)
should be carefully chosen to guarantee that R̃ ≥ 0 (positive
semidefinite). We refer to the use of (1) and (2) (with opti-
mized A, B and C, see below) to obtain an estimate of R as
the MGLC and MCC approaches, respectively.
The first goal of this paper is to obtain optimal estimates

of A, B and C that minimize the mean-squared error (MSE)
of R̃: MSE = E{‖R̃−R‖2}, where ‖ · ‖ denotes the Frobe-
nius norm, for both (1) and (2); the second goal of this paper
is then to use R̃ in lieu of R̂ in standard Capon beamformer
(SCB)[4] to improve the array output SINR.

3. KA COVARIANCE MATRIX ESTIMATION
3.1. MGLC and MCC
We will consider the MSE minimization problem first for (1)
and then for (2). For (1), using the fact that R̂ is an unbiased
estimate ofR, a simple calculation yields

MSE(R̃) = B2E{‖R̂ − R‖2} + (1 − B)2‖R‖2 − 2(1 − B)
tr [R∗(AR0 + CI)] + ‖AR0 + CI‖2, (3)
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where tr(·) denotes the trace operator.
Let

bT =
[
tr(R∗R0) ‖R‖2 tr(R∗)

]
, (4)

where (·)T denotes the transpose. Let θ = [A B C]T . Then
(3) can be written more compactly as

MSE(R̃) = θT Aθ − 2bT θ + const, (5)

where

A =

⎡
⎣ ‖R0‖2 tr(R∗

0R) tr(R∗
0)

tr(R∗
0R) ‖R‖2 + ρ tr(R∗)

tr(R∗
0) tr(R∗) ‖I‖2

⎤
⎦ , (6)

with ρ
�
= E{‖R̂ − R‖2}. The minimum solution for (5) is:

θ0 = [A0 B0 C0]
T = A−1b, (7)

where (·)−1 denotes the inverse of a matrix. However, θ0 in
(7) may not guarantee that R̃ ≥ 0. We consider the following
MSE minimization problem with R̃ ≥ 0 enforced:

min
δ,θ

δ

s.t.
[

δ [θ − θ0]
T

[θ − θ0] A−1

]
≥ 0

R̃(θ) ≥ 0. (8)

The above formulation is a Semidefinite Program (SDP) that
can be efficiently solved in polynomial time using public do-
main software. For MCC, we only need to add the following
additional constraint

uT
3 θ = 1, u3 = [1 1 1]T , (9)

to the MGLC formulation in (8). We use ul to denote a vector
of 1’s of length l. The resulting problem is still a SDP.
In practice, θ0 must be replaced by θ̂0 = Â−1b̂, with Â

and b̂ being the estimates of A and b, respectively. Then (8)
becomes:

min
δ,θ

δ

s.t.

⎡
⎣ δ

[
θ − θ̂0

]T

[
θ − θ̂0

]
Â−1

⎤
⎦ ≥ 0

R̃(θ) ≥ 0. (10)

Note that ρ+‖R‖2 = E{‖R̂−R‖2}+‖R‖2 = E{‖R̂‖2}, as
suggested in [5],we can estimate ρ+‖R‖2 by ‖R̂‖2, which is
an unbiased estimate, and we can estimate ‖R‖2 by ‖R̂‖2−ρ̂,
where ρ̂ is an estimate of ρ, which can be obtained as [2]:

ρ̂ =
1

N2

N∑
n=1

‖y(n)‖4 − 1
N

‖R̂‖2. (11)

We also replace R by R̂ in tr(R) and tr(R∗R0). We refer
to the resulting SDP problem in (10) for MGLC as MGLC1,
and similarly, (10) with the constraint (9) for MCC as MCC1.
Alternatively, we can enforce in (10) A ≥ 0, B ≥ 0, and

C ≥ 0. Then the constraint R̃(θ) ≥ 0 is trivially satisfied
and (10) becomes a quadratic program (QP):

min
θ

(
θ − θ̂0

)T

Â
(
θ − θ̂0

)

s.t. θi ≥ 0, i = 1, 2, 3, (12)

where θi is the ith component of θ. We denote this formula-
tion for MGLC as MGLC2. Similarly, adding (9) as an addi-
tional constraint to (12) yields a QP problem for MCC, which
we denote as MCC2.

3.2. Extensions
Let {R(s)

0 }S
s=1 denote S a priori covariance matrices. We

consider the following linear combinations:

R̃ =
S∑

s=1

A(s)R(s)
0 + BR̂ + CI, (13)

where {A(s)}S
s=1 are the weights applied to the a priori co-

variance matrices {R(s)
0 }S

s=1. Constraints again need to be
imposed to ensure that R̃ ≥ 0. Note that (1) is a special case
of (13) with S = 1.
MatrixA in (6) for this extended case becomes:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

‖R(1)
0 ‖2 · · · tr(R(1)∗

0 R(S)
0 )

...
. . .

...
tr(R(1)∗

0 R(S)
0 ) · · · ‖R(S)

0 ‖2

tr(R(1)∗

0 R) · · · tr(R(S)∗

0 R)
tr(R(1)∗

0 ) · · · tr(R(S)∗

0 )

tr(R(1)∗

0 R) tr(R(1)∗

0 )
...

...
tr(R(S)∗

0 R) tr(R(S)∗

0 )
‖R‖2 + ρ tr(R∗)
tr(R∗) ‖I‖2

⎤
⎥⎥⎥⎥⎥⎦

. (14)

Similarly, b in (4) now has the form:

bT =
[
tr(R∗R(1)

0 ) · · · tr(R∗R(S)
0 ) ‖R‖2 tr(R∗)

]
. (15)

We redefine θ as θ =
[
A(1) · · · A(S) B C

]T . Given A
and b, the corresponding Â and b̂ can be obtained similarly
as before. Consequently, an estimate of θ can be obtained
by solving (10) for extended MGLC1, and (12) for extended
MGLC2 (with the constraints being replaced by θi ≥ 0, i =
1, 2, · · · , S, S + 1, S + 2). By solving (10) and (12) with the
additional constraint: uT

S+2θ = 1, we get extended MCC1

and MCC2, repectively.
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Let

θ̂MGLCi =
[
Â

(1)
MGLCi

· · · Â
(S)
MGLCi

B̂MGLCi
ĈMGLCi

]T

, i = 1, 2,

(16)
be the solution to the extended MGLCi problem, i = 1, 2.
Then the resulting R̃ for extended MGLCi, i = 1, 2, is:

R̃MGLCi
=

S∑
s=1

Â
(s)
MGLCi

R(s)
0 + B̂MGLCi

R̂ + ĈMGLCi
I, i = 1, 2.

(17)
Similarly, θ̂MGLCi

and R̃MCCi
for MCCi, i = 1, 2, can be ob-

tained by replacing the subscript “MGLi” with “MCCi”, i =
1, 2, in (16) and (17), respectively.
Remark: We note from the unconstrained solution of θ

that the value of ĈMGLC increases as tr(R̂) increases. Specif-
ically, tr(R̂) will be large in the presence of strong interfer-
ences, resulting in a very high weighting value on I in R̃MGLC.
To avoid the said problem of MGLC, an additional constraint
can be enforced in the MGLC formulations in (10) and (12):

θS+2 ≤ γλmin, (18)

where λmin is the smallest non-zero eigenvalue of R̂, and γ is a
scaling factor, which is chosen to be 103M/N . The constraint
in (18) is usually inactive when tr(R̂) is small.

4. USING R̃ FOR ADAPTIVE BEAMFORMING
Assume the true covariance matrix R of the array output has
the following form: R = σ2

0a0a∗
0+

∑K
k=1 σ2

kaka∗
k+Q, where

σ2
0 and σ2

k, respectively, are the powers of SOI and of the kth
interference impinging on the array, a0 and ak are the steering
vectors, andQ is the noise covariance matrix.
The array weight vectorw obtained by SCB is

w0 =
R−1a0

a∗
0R−1a0

. (19)

The beamformer output signal-to-interference-plus-noise ra-
tio (SINR) can be expressed as

SINR =
σ2

0 |w∗
0a0|2

w∗
0(

∑K
k=1 σ2

kaka∗
k + Q)w0

. (20)

By inserting (19) in (20) and using the matrix inversion
lemma, we get the optimal array output SINR: SINRopt =

σ2
0a

∗
0

(∑K
k=1 σ2

kaka∗
k + Q

)−1

a0. The weight vectors for
SCB, MGLC and MCC can be obtained by replacing R in
(19) with R̂, {R̃MGLCi

}i=1,2 and {R̃MCCi
}i=1,2, respectively.

The corresponding SINR values can then be obtained by us-
ing (20) with thew0 in (20) replaced by the SCB, MGLC and
MCC weight vectors.

5. NUMERICAL EXAMPLES
In this section, we compare the performance of SCB and
MGLC. The performance is also compared with that obtained

by setting A’s to zero in MGLC, resulting in a diagonal load-
ing approach. The performance of MCC was inferior to that
of MGLC and MGLC2 gave overall the best performance
in all of our examples and hence only the MGLC2 results
are presented hereafter. We consider a uniform linear array
(ULA) with M = 10 sensors and half-wavelength spacing
between adjacent elements. Assume a spatially white Gaus-
sian noise andQ = I. We assume that the direction-of-arrival
(DOA) of the signal of interest (SOI) relative to the array nor-
mal is θ0 = 0◦ and that there are K = 2 interferences whose
DOAs are θ1 = −40◦, θ2 = 20◦. The powers of the SOI
and the two interferences are σ2

0 = 10 dB, σ2
1 = 60 dB and

σ2
2 = 50 dB, respectively. Also, we assume knowledge of the
steering vector a0. Unlike SCB, MGLC allows N to be less
thanM .
We consider the following six cases (we useR0i to denote

the a priori covariance matrix for the ith case, i = 1, · · · , 6):
(i). Accurate a priori knowledge, i.e., R01 = R − Q =
σ2

0a0a∗
0 +

∑2
k=1 σ2

kaka∗
k.

(ii). Accurate a priori knowledge of the interferences, i.e.,
R02 =

∑2
k=1 σ2

kaka∗
k.

(iii). Only the DOA of the first interference is accurately
known: R03 = a1a∗

1.
(iv). Inaccurate a priori knowledge. We consider the case
where the a priori knowledge on the DOAs of the inter-
ferences is wrong, i.e., R04 = σ2

3a3a∗
3 + σ2

4a4a∗
4, where

σ2
3 = σ2

4 = 10 dB and a3 and a4 are the steering vectors for
two uncorrelated signals impinging on the array from -55◦
and 60◦.
(v). The DOAs of the interferences are accurately known:
R(1)

05 = a1a∗
1, andR(2)

05 = a2a∗
2.

(vi). The DOA of the first interference is accurately known,
but we assume wrongly that the DOA of the second interfer-
ence is 60◦: R(1)

06 = a1a∗
1 andR(2)

06 = a4a∗
4.

Figures 1(a) - 1(d) show the averaged array output SINR
versus the snapshot number N for Cases (i) - (iv). As shown
in 1(a) - 1(c), with (partially) accurate a priori knowledge,
MGLC2 significantly outperforms MGLC2 with A = 0.
When the a priori knowledge is inaccurate, the performance
of MGLC2 is similar to that of MGLC2 with A = 0 (see
Figure 1(d)). The SINR results for Cases (v) and (vi)
are displayed in Figure 2. Again, with (partially) accu-
rate a prior knowledge, MGLC2 outperforms MGLC2 with
A(1) = A(2) = 0.
As we can see from Figures 1 and 2, providing (partially)

accurate a priori knowledge can give great SINR improve-
ment in the presence of strong interferences.
Finally, we comment that our numerical examples (not

presented herein) show that, asN → ∞, all SINR curves (in-
cluding those of MGLC1) approach the optimal SINR curve,
as expected. Moreover, the SINR curves of MGLC2 always
stay above those of MGLC with A = 0 as well as those of
SCB.
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6. CONCLUSIONS
In this paper, we have presented two fully automatic meth-
ods, namely MGLC and MCC, for combining the sample co-
variance matrix R̂ with the a priori covariance matrix R0

(obtained from prior knowledge) and the identity matrix I to
get an enhanced estimate of R in the optimal mean squared
error sense. We have shown that providing accurate or par-
tially accurate a priori knowledge can significantly improve
the performance of the adaptive beamformers.
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Fig. 1. SINR versus N for (a) Case (i), (b) Case (ii), (c) Case
(iii), and (d) Case (iv).

20 40 60 80 100
−20

−15

−10

−5

0

5

10

15

20

Snapshot Number

SI
N

R
 (d

B
)

SCB
MGLC2 w/  A(1)=A(2)=0
MGLC2
SINRopt

(a)

20 40 60 80 100
−20

−15

−10

−5

0

5

10

15

20

Snapshot Number

SI
N

R
 (d

B
)

SCB
MGLC2 w/  A(1)=A(2)=0
MGLC2
SINRopt

(b)

Fig. 2. SINR versus N for (a) Case (v), and (b) Case (vi).
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