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ABSTRACT

Adaptive algorithms based on sample matrix inversion belong
to an important class of algorithms used in radar target detec-
tion to overcome prior uncertainty of interference covariance.
Sample matrix inversion problem is generally ill conditioned.
Moreover, the contamination of the empirical covariance ma-
trix by the useful signal leads to signi cant degradation of
performance of this class of adaptive algorithms. Regulariza-
tion, also known in radar literature as sample covariance load-
ing, can be used to combat both ill conditioning of the original
problem and contamination of the empirical covariance by the
desired signal. However, the optimum value of loading factor
cannot be derived unless strong assumptions are made regard-
ing the structure of covariance matrix and useful signal pene-
tration model. In this paper an iterative algorithm for loading
factor optimization based on the maximization of empirical
signal to interference plus noise ratio (SINR) is proposed. The
proposed solution does not rely on any assumptions regarding
the structure of empirical covariance matrix and signal pene-
tration model. The paper also presents simulation examples
showing the effectiveness of the proposed solution.

Index Terms— adaptive lters, matrix inversion, interfer-
ence suppression.

1. INTRODUCTION

Loading of the sample covariance matrix is used in loaded
sample matrix inversion (LSMI) algorithm to alleviate losses
incurred by using nite sample size estimate of the true co-
variance matrix [1]. The well known heuristic result due to
Carlson [1] suggests xing the value of loading factor at the
level 10 dB above the white noise power. This choice of
loading factor is indeed suitable in many practical scenarios.
However, in some situations this value of loading factor might
turn out to be too low, e.g., when useful signal is present in the
training sample that is used for covariance matrix estimation.
In this situation the effectiveness of LSMI using xed loading
factor signi cantly decreases. Moreover, if the signal power
in training sample is suf ciently strong, target cancellation
may occur. According to the well established methodology,
loading factor can be optimized to prevent target cancellation
by taking into account phased array calibration errors [2, 3].

This approach relies on a reasonably accurate model for train-
ing sample contamination. Often this model does not re ect
the actual mechanisms that lead to the contamination of the
training sample by the useful signal. For example, when the
target is highlymanoeuvring or distributed, this approach can-
not model useful signal penetration. In this paper we concen-
trate on the non–parametric approach to loading factor opti-
mization that does not rely on any model for training sample
contamination. This approach is based on the iterative maxi-
mization of empirical Rayleigh quotient.
The remaining of this paper is organized as follows. Sec-

tion 2 describes the LSMI algorithm and presents loading fac-
tor optimization problem. Section 3 describes the solution
to the optimization problem and proposed iterative algorithm
for the optimization of loading factor. Section 4 presents nu-
merical examples showing the effectiveness of proposed al-
gorithm. Finally, section 5 concludes the paper.

2. PROBLEM STATEMENT

The problem of nding optimum weights for the linear detec-
tor of a known signal s corrupted by the correlated interfer-
ence with known covarianceR can be formulated in terms of
the output SINR maximization [3]:

γout =
|wH

s|2

wHRw
. (1)

Here γout is the output SINR of the detector, also known as
Rayleigh quotient, and w are detector weights. The expres-
sion for w maximizing (1) is known to have the following
form [1]:

wopt ∝ R
−1

s. (2)

WhenR is not known in advance, one can resort to the adap-
tive version of (2) using the maximum likelihood estimate of
covariance matrix [1]:

R̂ =
1

M
XX

H , (3)

instead of the true R. Here X = [x1,x2, . . . ,xM ] is a train-
ing sample containingN × 1 vectors of the space–time sam-
ples {xi}

M
i=1 of locally homogeneous correlated Gaussian in-

terference derived from a set of cells surrounding the cell of
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1. Covariance matrix estimation

R̂ = 1
M

XX
H (3);

2. Initialization of iterative algorithm

α1 = σ2
n;

3. For all i = 1 . . . T

w̃i =
(
R̂ + αiI

)−1

s (11);

ṽi =
(
R̂ + αiI

)−1

w̃i (11);

λi = −1 −
2w̃H

i
ṽi(1−w̃

H

i
s)+w̃

H

i
w̃iṽ

H

i
s

|sH
ṽi|2

(16);

αi+1 =
w̃

H

i
w̃i+ṽ

H

i
s+λiṽ

H

i
s

(2ṽH

i
w̃i)

(15);

4. Estimation of weight vector

ŵ =
(
R̂ + αT I

)−1

s (5);

Fig. 1. Iterative algorithm for estimation of loading factor α

and weight vector ŵ.

interest, N is the dimensionality of space–time processing
and M is the number of training samples. The introduction
of loading factor α leads to the following expression for the
regularized estimate of the interference covariance matrix:

R̂
′ = R̂ + αI, (4)

leading to the adaptive LSMI algorithm:

ŵ � wLSMI =
(
R̂ + αI

)−1

s. (5)

Given the structure (5) imposed on the estimator of optimum
weights and the fact that optimum α is unknown, the follow-
ing optimization problem can be stated:

α̂opt = arg max
α

γ̂out (6)

Here we introduce γ̂out to clarify our assumption that ŵ de-
ned in (5) and R̂

′ de ned in (4) can be used to approximate
γout by the empirical SINR γ̂out while maximizing γout with
respect to α.

3. LOADING FACTOR OPTIMIZATION

In the following we consider solving the problem (6). At rst,
we use the expression (1) for the true γout to reformulate the
problem. After that, we use the necessary approximations to
arrive at the expression for the cost function.

To facilitate algebraic manipulations, the problem of max-
imizing γout in (1) with respect to α can be reformulated in
terms of minimizingwH

Rw subject to a constraint on |wH
s|2:

αopt = arg min
α

w
H
Rw, s. t. |wH

s|2 = 1 (7)

To resolve (7) we apply approximationsw � ŵ andR � R̂
′

to w and R in (1) and use the linearization of (5) proposed
in [4]. Note that α is small relative to the diagonal entries
of R̂ and we can use Taylor series to approximate (5) in the
vicinity of the point α = 0:

ŵ = [ŵ]
α=0 + α

[
∂

∂α
ŵ

]
α=0

+
α2

2!

[
∂2

∂α2
ŵ

]
α=0

+
α3

3!

[
∂3

∂α3
ŵ

]
α=0

+ . . .

(8)

Calculating the rst derivative of ŵ with respect to α:[
∂

∂α
ŵ

]
α=0

=

[
−

(
R̂ + αI

)−1

I

(
R̂ + αI

)−1

s

]
α=0

= −R̂
−2

s,

(9)

and limiting the expansion (8) to its rst two components re-
sults in the following linear approximation of (5):

ŵ � R̂
−1

s− αR̂
−2

s. (10)

The introduction of the notation

w̃ � R̂
−1

s and ṽ � R̂
−1

w̃ (11)

leads to the representation of (10) in terms of w̃ and ṽ

ŵ � w̃ − αṽ. (12)

Substituting (12) into (7) and using Lagrange multipliers re-
sults in the following cost function to be minimized:

J(α) = w̃
H

s− αw̃
H
w̃ − αṽ

H
s

+ α2
ṽ

H
w̃ + λ(w̃H

s− αṽ
H

s − 1),
(13)

where λ is the Lagrange multiplier. The derivative of the cost
function with respect to α has the following expression:

∂

∂α
J(α) = −w̃

H
w̃ − ṽ

H
s + 2αṽ

H
w̃ − λṽ

H
s. (14)

Equating (14) to zero we nd the expression for α̂opt:

α̂opt =
w̃

H
w̃ + ṽ

H
s + λṽ

H
s

2ṽHw̃
. (15)

The expression for the unknown λ follows from substituting
(15) into constraint equation |wH

s|2 = 1 following from (7):

ŵ
H
s = (w̃H − α̂∗optṽ

H)s

= w̃
H
s−

(
w̃

H
w̃ + ṽ

H
s + λṽ

H
s

2ṽHw̃

)∗
ṽ

H
s

= w̃
H
s−

w̃
H
w̃ṽ

H
s + s

H
ṽṽ

H
s + λs

H
ṽṽ

H
s

2w̃H ṽ
= 1
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(a) Input SINR = 20 dB

20 40 60 80 100 120
18

20

22

24

26

28

30

N

O
ut

pu
t S

IN
R

, d
B

(b) Input SINR = 0 dB
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(c) Input SINR = -20 dB

20 40 60 80 100 120

10

15

20

25

30

N

O
ut

pu
t S

IN
R

, d
B

(d) Input SINR = -40 dB

20 40 60 80 100 120
0

5

10

15

20

25

30

N

O
ut

pu
t S

IN
R

, d
B

(e) Input SINR = -60 dB
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(f) Input SINR = -80 dB

Fig. 2. Output SINR of LSMI as a function of the number of samplesN for different values of input SINR. Dotted line denotes
optimum algorithm with known covarianceR, solid line denotes proposed approach, dash–dotted line denotes LSMI with xed
loading factor α = 10σ2

n [1]. Training sample is not contaminated by the useful signal,M = N .
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(e) Input SINR = -60 dB

20 40 60 80 100 120

5

0

5

10

15

20

25

30

N

O
ut

pu
t S

IN
R

, d
B

(f) Input SINR = -80 dB

Fig. 3. Output SINR of LSMI as a function of the number of samplesN for different values of input SINR. Dotted line denotes
optimum algorithm with known covarianceR, solid line denotes proposed approach, dash–dotted line denotes LSMI with xed
loading factor α = 10σ2

n [1]. Training sample is contaminated by the useful signal,M = N .
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Finally, the expression for λ becomes:

λ = −1 −
2w̃H

ṽ(1 − w̃
H
s) + w̃

H
w̃ṽ

H
s

|sH ṽ|2
(16)

Thus the algorithm for data dependent α optimizaton, maxi-
mizing empirical SINR γ̂out consists of calculating w̃ and ṽ

using (11) and λ and α̂opt using (16) and (15). Finally, ŵ is
calculated according to (5). Linear approximation in (10) pre-
vents the convergence of the algorithm outlined above to α̂opt
during the rst iteration if α̂opt is comparatively large. We
propose to use iterative algorithm to converge to this value.
This algorithm is outlined in Fig. 1. Note that this algorithm
is initialized with the value of α1 equal to the power of white
noise σ2

n. The idea behind this iterative algorithm is that at i–
th iteration of the algorithm, ŵ is expanded around the point
α = αi and as αi becomes closer to the true α̂opt with grow-
ing i, the accuracy of approximation (12) increases leading to
the convergence of the algorithm to α̂opt.

4. NUMERICAL EXAMPLES

In this section we compare the performance of optimum algo-
rithmwith known covarianceR, LSMIwith xed loading fac-
tor α = 10σ2

n [1], and proposed approach to data–dependent
estimation of α in terms of output SINR. Figures 2 and 3 show
the results of this comparison. To generate these gures we
used the following parameters of signal, noise and interfer-
ence. Pulse repetition frequency was set to 20 kHz, inter-
ference consisted of two components with average Dopplers
0 and 1000 Hz and Doppler spread equal to 500 Hz, interfer-
ence spectral envelope was Gaussian and input signal to white
noise ratio was 10 dB. Doppler shift of the signal was 4 kHz,
amplitude distribution of useful signal in training sample was
Rayleigh and average power of signal in training sample (if
present) was equal to its power in the cell of interest. The
number of iterations T in proposed algorithm was 3. The re-
sults were averaged over 500 Monte–Carlo trials.
Figure 2 shows output SINR of LSMI algorithm when

training sample is not contaminated by the useful signal and
Fig. 3 shows the results of training sample contamination. By
observing these gures we can conclude that when useful sig-
nal is present in training sample, severe degradation of LSMI
performance occurs if xed loading factor is used. The al-
gorithm using adaptive loading factor calculated using pro-
posed approach is able to alleviate this effect, especially if
useful signal dominates in the training sample. On the other
hand, by observing Fig. 2 we can see that the introduction of
adaptive loading factor leads to insubstantial loss in perfor-
mance when useful signal is absent from the training sample.
Thus we can conclude that the application of the proposed ap-
proach yields overall performance improvementwhen used in
conjunction with LSMI algorithm. We can explain this result
by the fact that the proposed algorithm tries to nd a balance
between the gain that is obtained by applying matched lter

for white noise case w = s and the adaptive lter for col-
ored noise case w = R̂

−1
s. In the situation when useful

signal is not present in training sample, the application of the
latter lter gives the best gain. Whereas when the training
sample is contaminated by the useful signal, the application
of this adaptive lter may actually lead to signi cant perfor-
mance degradation due to signal cancellation effect. Thus in
the latter situation the proposed algorithm automatically in-
creases the loading factor so that more emphasis is put on
non–adaptive weight vector w = s. However, the observa-
tion of Fig. 3(e) and Fig. 3(f) leads to the conclusion that this
loading factor tuning does not lead to signi cant performance
improvementwhen interference is very strong. This can be at-
tributed to the fact that in this case it is not possible to achieve
performance improvement by just varying the effect of the
two mentioned weight vectors.

5. CONCLUDING REMARKS

In this paper an iterative algorithm for loading factor opti-
mization is proposed within the framework of LSMI algo-
rithm. Linearization of the expression for weights obtained
via LSMI algorithm is used to derive constrained empirical
cost function. An expression for loading factor minimizing
this cost function is derived. After that, an iterative solution
is proposed to take into account the fact that the linearization
prevents the convergence of the proposed algorithm during
the rst iteration. Finally, simulation examples showing the
effectiveness of the proposed scheme along with the discus-
sion of obtained results are presented. Analytical justi cation
of the algorithm described in this paper is the subject to fur-
ther development.
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