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ABSTRACT
One of the most well-known robust adaptive beamforming ap-
proaches is diagonal loading. However, there are usually no
clear guidelines on how to choose the diagonal loading level
reliably. In this paper, we present algorithms that can compute
the diagonal loading level fully automatically from the given
data without the need of specifying any user parameters. The
proposed diagonal loading algorithms use shrinkage-based co-
variance matrix estimates, instead of the conventional sample
covariance matrix, in the standard Capon beamforming for-
mulation. The performance of the resulting beamformers is
illustrated via numerical examples and compared with other
adaptive beamforming techniques.

Index Terms— Diagonal loading, Adaptive beamforming

1. INTRODUCTION

The Standard Capon Beamformer (SCB) is an optimal spatial
filter that maximizes the array output signal to interference
plus noise ratio (SINR), provided that the true covariance ma-
trix and the signal steering vector are accurately known. How-
ever, the covariance matrix can be inaccurately estimated due
to limited data samples and the knowledge of the steering vec-
tor can be imprecise due to look direction errors or imperfect
array calibration. Whenever these factors exist, there is a clear
performance degradation for SCB. Therefore, adaptive beam-
forming approaches robust to small sample size problems and
steering vector errors are needed.
One of the most well-known robust adaptive beamform-

ing approaches is diagonal loading [1]. The main drawback
of this method is that there is no clear way to choose the di-
agonal loading level reliably. Several recent robust adaptive
beamformers have been proposed [2], which can be regarded
as diagonal loading approaches, with the diagonal loading
level calculated based on the uncertainty set of the array steer-
ing vector. However, we still need to specify the parame-
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ter related to the size of the uncertainty set. Indeed, fully
parameter-free robust adaptive beamformers are scarce. One
example is the HKB-based SCB [3], which is also a diagonal
loading algorithm. However, it may have an inherent problem
in choosing an appropriate diagonal loading level.
We provide alternative approaches for the fully automatic

computation of the diagonal loading level. We replace the
conventional sample covariance matrix used in SCB by an
enhanced estimate based on a shrinkage method [4]. Numeri-
cal examples are presented to compare the performance of the
proposed beamformers with that of HKB and SCB in terms of
output SINR and signal-of-interest (SOI) power estimation.
Notation: The superscript (·)∗ denotes the conjugate

transpose, (·)T denotes the transpose, E(·) is the expectation
operator, tr(·) is the trace operator, and ‖·‖ denotes the Frobe-
nius norm for a matrix or the Euclidean norm for a vector.

2. PROBLEM FORMULATION

Consider an array comprisingM sensors and letR denote the
theoretical covariance matrix of the array output vector. We
assume thatR > 0 (positive definite) has the following form:

R = σ2
0a0a∗

0 + Q, (1)

where σ2
0 denotes the power of the SOI, a0 is the array steer-

ing vector of the SOI with ‖a0‖2 = M , andQ is the interference-
plus-noise covariance matrix.
Under ideal conditions, i.e., a0 andR are accurately known,

the SCB maximizes the output SINR and the optimal value is
SINRopt = σ2

0a
∗
0Q

−1a0. In practice, the exact covariance ma-
trixR is unavailable. Therefore,R is replaced by the sample
covariance matrix R̂ = 1

N

∑N
n=1 y(n)y∗(n), with N denot-

ing the number of snapshots and y(n) representing the nth
snapshot. As N increases, R̂ converges to R, and the value
of the corresponding SINR will approach SINRopt eventually.
However, when R̂ contains samples from SOI (e.g., in mobile
communications applications), the convergence rate of SCB
can be very slow (N � M is required). Consequently, the
performance of SCB degrades substantially in the presence of
small sample size problems, even when a0 is exactly known.
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Moreover, the mismatch between the true and assumed steer-
ing vectors (a0 and a) can also significantly deteriorate the
performance of SCB.
To improve the performance of SCB, we replace R̂ by an

enhanced covariance matrix estimate based on a shrinkage-
based method [4]. The enhanced estimate is obtained by lin-
early combining R̂ and a shrinkage target (a given matrix
with some structure) in an optimal mean-squared error (MSE)
sense, which can be done via both analytical and convex op-
timization approaches as shown in the next section.

3. SHRINKAGE-BASED COVARIANCE MATRIX
ESTIMATION

A linear shrinkage estimate, which we refer to as the Convex
Combination (CC), has the form:

R̃ = αI + (1 − α)R̂, (2)

where α is the shrinkage intensity, R̃ is an enhanced estimate
of R and we use the most commonly employed shrinkage
target - the identity matrix I. We also consider a more general
linear combination (GLC):

R̃ = αI + βR̂. (3)

The shrinkage parameters for both CC and GLC can be cho-
sen by minimizing (an estimate of) the MSE of the estimator
R̃ [4], where MSE(R̃) = E{‖R̃ − R‖2}.
Note that the constraints α ∈ [0, 1] for CC and α ≥ 0,

β ≥ 0 for GLC can be imposed to guarantee that R̃ ≥ 0.
Alternatively, we can impose R̃ ≥ 0 directly for both CC
and GLC. In the rest of the section, we first review the ap-
proaches in [5], where the constraints in the former case are
used, and then we extend the approaches further by formu-
lating the MSE minimization problems as convex optimiza-
tion problems, where all the aforementioned constraints can
be imposed.

3.1. Review of the Approaches in [5]

We consider the MSE minimization problem for GLC first.

MSE(R̃) = ‖αI − (1 − β)R‖2 + β2E{‖R̂ − R‖2}
= α2M − 2α(1 − β) tr(R)

+(1 − β)2‖R‖2 + β2E{‖R̂ − R‖2}. (4)

The optimal values for β and α can be readily obtained:

β0 =
γ

ρ + γ
, (5)

α0 = ν(1 − β0) = ν
ρ

γ + ρ
, (6)

where ρ = E{‖R̂ − R‖2}, ν = tr(R)
M , and γ = ‖νI − R‖2.

We note that β0 ∈ [0, 1] and α0 ≥ 0.

To estimate α0 and β0 from the given data, we need an
estimate of ρ, which can be calculated as (see [5] for details):

ρ̂ =
1

N2

N∑
n=1

‖y(n)‖4 − 1
N

‖R̂‖2. (7)

Consequently, we can get estimates for α0 and β0:

β̂
(1)
0 =

γ̂

γ̂ + ρ̂
, (8)

and
α̂

(1)
0 = ν̂(1 − β̂

(1)
0 ), (9)

where ν̂ = tr(R̂)
M , and γ̂ = ‖ν̂I − R̂‖2. Note that α̂(1)

0 and
β̂

(1)
0 satisfy the constraints α ≥ 0 and β ≥ 0. In addition,
note that γ + ρ = E{‖R̂ − νI‖2}, an estimate of which is
given by ‖R̂− ν̂I‖2. Then we can get alternative estimates of
α0 and β0 (we need to guarantee that they are nonnegative):

α̂
(2)
0 = min

[
ν̂

ρ̂

‖R̂ − ν̂I‖2
, ν̂

]
, (10)

β̂
(2)
0 = 1 − α̂

(2)
0

ν̂
. (11)

We will refer to the GLC using (8)-(9) as GLC1, and to the
GLC using (10)-(11) as GLC2.
Note that α0 and β0 can be rewritten as α0 = ντ0 and

β0 = 1 − τ0 (τ0 = ρ
ρ+γ ), which implies that GLC reduces

to CC when ν = 1. Therefore, setting ν̂ = 1, we can obtain
α̂

(1)
0 from (9) and α̂

(2)
0 from (10) for CC, which we refer to as

CC1 and CC2, respectively.

3.2. Extensions

Below the MSE minimization problems for GLC and CC are
formulated as convex optimization problems.
Consider first the convex formulation of GLC. From (4),

MSE(R̃) = α2M + 2αβ tr(R) + β2‖R‖2 + β2ρ

−2α tr(R) − 2β‖R‖2 + const
= θT Aθ − 2bT θ + const. (12)

where θ = [α β]T , b =
[
tr(R) ‖R‖2

]T , and

A =
[

M tr(R)
tr(R) ‖R‖2 + ρ

]
. (13)

Note thatA > 0 and hence, (12) has a unique (unconstrained)
minimum solution given by:

θ0 = [α0 β0]T = A−1b, (14)

which is equivalent to the optimal solution in (5) and (6).
Next, we rewrite (12) as:[

θ − A−1b
]T

A
[
θ − A−1b

]
+ const. (15)
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Then, theMSEminimization problem for GLC under the con-
straint R̃ ≥ 0 can be formulated as the following Semidefinte
Program (SDP):

min
δ,θ

δ

subject to

⎡
⎣ δ

[
θ − Â−1b̂

]T

[
θ − Â−1b̂

]
Â−1

⎤
⎦ ≥ 0

R̃(θ) ≥ 0. (16)

which can be solved in polynomial time using public domain
software [6]. In addition, it is easy to obtain a convex opti-
mization formulation for CC by adding the constraint:

uT θ = 1, u = [1 1]T (17)

to (16). The so-obtained problem is still a SDP.

Note that A and b are replaced by their estimates Â and
b̂ in (16). One way to obtain Â and b̂ is to use ρ̂ (7) and R̂,
respectively, in lieu of ρ and R in A and b. Then, we can
obtain estimates α̂

(1′)
0 and β̂

(1′)
0 of α0 and β0 by solving (16).

We refer to this method as GLC1′ . Similarly, we can also ob-
tain α̂

(1′)
0 by adding (17) to (16) for CC, which we refer to as

CC1′ . Note that GLC1′ and CC1′ can be readily shown to be
equivalent to GLC1 and CC1, respectively. Indeed, the con-
straint R̃ ≥ 0 is inactive due to the GLC1′ solution satisfying
α̂

(1′)
0 ≥ 0 and β̂

(1′)
0 ≥ 0, and to the CC1′ solution satisfying

α̂
(1′)
0 ∈ [0, 1], which guarantees that R̃ ≥ 0.

Exactly as in CC2 and GLC2, we can also use alternative
estimates of the unknown quantities in A and b. Noting that
ρ + ‖R‖2 = E{‖R̂‖2}, so we can estimate ρ + ‖R‖2 in A
by ‖R̂‖2, and estimate ‖R‖2 in b by ‖R̂‖2 − ρ̂. We also
replace R by R̂ in tr(R). Consequently, we can obtain esti-
mates α̂

(3)
0 and β̂

(3)
0 from (16) for GLC, which we refer to as

GLC3, and an estimate α̂
(3)
0 from (17) and (16) for CC, which

we refer to as CC3. GLC3 and CC3 are in general different
from GLC2 and CC2, respectively, due to GLC3 and CC3 en-
forcing R̃ ≥ 0 directly while minimizing (15) (with A and
b replaced by Â and b̂). GLC2 and CC2, on the other hand,
minimize (15) (withA and b replaced by the same Â and b̂)
without imposing any constraints, and then clip the solutions
to satisfy α̂

(2)
0 ≥ 0 and β̂

(2)
0 ≥ 0 for GLC and α̂

(2)
0 ∈ [0, 1]

for CC. Therefore, GLC2 and CC2 are suboptimal. The op-
timal version of GLC2, which we refer to as GLC4, can be
obtained by using the constraints α ≥ 0 and β ≥ 0 instead of
R̃(θ) ≥ 0 in (16) and calculating Â and b̂ in the same way
as in GLC3. We can similarly get CC4, which is the optimal
version of CC2.

4. SHRINKAGE-BASED ROBUST CAPON
BEAMFORMERS

We have 8 methods to obtain the enhanced estimates of the
covariance matrix, i.e.,

R̃GLCi
= α̂

(i)
0 I + β̂

(i)
0 R̂, i = 1, · · · , 4, (18)

and

R̃CCi
= α̂

(i)
0 I + (1 − α̂

(i)
0 )R̂, i = 1, · · · , 4. (19)

Using one of the above enhanced estimates R̃ in lieu of R̂ in
the SCB formulation yields the shrinkage-based robust adap-
tive beamformer: w̃ = R̃−1a

a∗R̃−1a
. The resulting beamformer

output SINR is given by SINR = σ2
0 |w̃∗a0|2
w̃∗Qw̃ , and the SOI

power estimate is σ̂2
0 = w̃∗R̃w̃.

From (18)-(19), we note that the shrinkage-based robust
adaptive beamformers are diagonal loading approaches with
the diagonal loading levels (α̂0/β̂0 for GLC and α̂0/(1 −
α̂0) for CC) determined automatically from the observed data
snapshots {y(n)}N

n=1.

5. NUMERICAL EXAMPLES

We present below several numerical examples comparing the
performance of the shrinkage-based robust adaptive beam-
formers with that of HKB and SCB. Interestingly, in all of
these examples, the GLC2 solutions did not need clipping,
and hence GLC2, GLC3, and GLC4 were equivalent, in ad-
dition, GLC1 performed similarly to GLC2. The same was
true for CC. Therefore, only the results obtained by GLC2 and
CC2 will be presented, and we will refer to GLC2 as GLC and
CC2 as CC for short. In all examples, we assume a uniform
linear array withM = 10 sensors and half-wavelength inter-
element spacing. The noise is assumed to be white complex
Gaussian random process with zero-mean and covariance ma-
trix I. A SOI with a 10 dB power is assumed to impinge on
the array from 0◦, and two interferences, each with a 20 dB
power, are assumed to be present at 10◦ and 60◦. For each
scenario, 1000 Monte-Carlo trials are performed.
First, we examine the output SINR convergence perfor-

mance of the beamformers. Fig. 1 shows the mean of the
output SINRs versus the number of snapshots N when a0 is
known. As shown in the figure, SCB converges to SINRopt
very slowly. Both GLC and CC outperform SCB. Whereas,
unlike CC, GLC provides a significant improvement over SCB
for all values of N considered. Figs. 2(a) and (b) show the
mean values of the diagonal loading levels of GLC and CC,
respectively, as a function of N . We observe that the diag-
onal loading level of CC is much lower than that of GLC.
Another observation from Fig. 1 is that the output SINR of
HKB decreases when N is beyond a certain number. Unlike
GLC and CC, as shown in Fig. 2(c), the mean of the diago-
nal loading level for HKB starts from a very small value and
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monotonically and quickly increases with N . This behavior
limits HKB’s performance improvement over SCB when N
is small and deteriorates its performance when N is large.
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Fig. 1. Beamformer output SINR versus N .
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Fig. 2. Average diagonal loading levels versus N : (a) GLC
(b) CC (c) HKB.
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Fig. 3. Performance comparison in the presence of a 2◦ steer-
ing angle error: (a) SINR, (b) SOI power estimates versusN .

Next, we examine the robustness of the beamformers to
small sample size problems and to steering vector errors. Figs.
3 and 4, respectively, show the performance in the presence
of look direction errors (2◦ SOI steering angle mismatch) and
array calibration errors. The array calibration errors are sim-
ulated by perturbing each element of the array steering vector
using independent zero-mean complex Gaussian random vari-
ables with variance 0.01. GLC shows the best performance,
especially whenN is small. Moreover, HKB and SCB are not
applicable when R̂ is rank deficient (N < M ), whereas, GLC
and CC can be used. Note that when N � M , R̂ becomes
very close to R, and hence the shrinkage-based approaches
will choose small diagonal loading levels. Then their abil-
ity to combat steering vector errors will diminish. Yet the
shrinkage based methods are very useful for the case of small
sample sizes. This case is often encountered in practice and
is most critically in need of performance improvement.
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Fig. 4. Performance comparison in the presence of array cal-
ibration errors: (a) SINR, (b) SOI power estimates versus N .

6. CONCLUSIONS

We have presented several approaches to the fully automatic
computation of diagonal loading levels. In our diagonal load-
ing algorithms, the conventional sample covariance matrix
used in the SCB formulation is replaced by an enhanced co-
variance matrix estimate based on shrinkage. We have shown
how to efficiently obtain the shrinkage covariance matrix es-
timates from the available data. Several numerical examples
have been used to compare the performance of the proposed
beamformers with that of SCB and HKB. The shrinkage-based
approaches improve the robustness of SCB against small sam-
ple size problems and steering vector errors, with GLC having
the best performance among the methods tested. More impor-
tantly, we have demonstrated that GLC is very useful in the
case of small sample sizes - the case in which the users of
adaptive arrays are most interested.
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