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ABSTRACT

We present a new spherical ESPRIT algorithm, being a
closed-form algorithm for use in conjunction with spherical
arrays that provides automatically paired source azimuth and
elevation estimates. It is a numerically ef cient 2D angle-of-
arrival estimation algorithm which does not rely on extensive
spectral searches or iterative solutions to multi-dimensional
optimization problems. The spherical ESPRIT is based on the
spherical phase mode excitation principle, enabling us to ex-
ploit the spherical symmetry of the antenna array by relying
on a recursive relationship between spherical harmonics.

Index Terms— Spherical antennas, Direction of arrival
estimation, Fourier transforms

1. INTRODUCTION

Estimating the directions of arrival (DOAs) of propagating
plane waves is a popular subject of research in a variety
of applications. Several algorithms are already developed,
where the accuracy of the estimates and the computational
ef ciency are the most important concerns. MUSIC [1] deliv-
ers accurate results, but often requires a high computational
cost. Only for particular array con gurations, such as uni-
form linear arrays and uniform circular arrays (UCAs), there
exist numerically ef cient MUSIC-based estimation algo-
rithms. However, these algorithms are often limited to one
dimension. ESPRIT [2] overcomes this problem, because
it is a closed-form DOA estimation algorithm that provides
automatically paired source azimuth and elevation angle es-
timates. The ESPRIT algorithm relies on a displacement
invariance array structure, such that only some speci c array
con gurations are appropriate for applying ESPRIT. In [3] an
ESPRIT-based algorithm is developed for UCAs. UCAs are
attractive array con gurations since the circular symmetry
in the array can be exploited by performing a phase mode
excitation, consisting essentially of a Fourier analysis. In this
paper an ESPRIT-based algorithm is developed for spherical
array con gurations. Spherical arrays possess a high degree
of symmetry and this can be exploited by spherical phase
mode excitation [4]. Similar to UCAs, this excitation is now

essentially a spherical Fourier transform. By means of a
recursive relationship between spherical harmonics an auto-
matically paired azimuth and elevation estimation algorithm
is developed.

2. SPHERICAL ARRAY GEOMETRY AND
MANIFOLD

We consider a spherical antenna array consisting ofN identi-
cal antenna elements. The position vector of antenna n of the
array is pn = (R cosϕn sin θn, R sinϕn sin θn, R cos θn).
Each antenna element is unambiguously de ned by the el-
evation angle and azimuth angle (θn, ϕn). The elevation
angle is measured down from the z axis and the azimuth
angle is measured counterclockwise from the x axis. The
choice of (θn, ϕn) (n = 1, . . . , N) is a complex problem and
an appropriate choice will be discussed when the spherical
phase mode excitation is considered (see Section 4). Con-
sider a narrowband plane wave with wave number k0 = 2π/λ
propagating in the direction −r with elevation and azimuth
angle θ and ϕ, respectively. The unit vector r has cartesian
coordinates r = (cosϕ sin θ, sinϕ sin θ, cos θ). The phase
difference between the complex envelopes of the signals
received at the origin and at element n at a given time is
ψn = ejk0r·pn = ejk0R(sin θ sin θn cos (ϕ−ϕn)+cos θ cos θn). The
element space spherical array manifold vector is therefore

a(θ, ϕ) = [ejk0r·p1 , ejk0r·p2 , . . . , ejk0r·pn ]T . (1)

3. SPHERICAL PHASE MODE EXCITATION WITH
A CONTINUOUS APERTURE

Consider a continuous spherical aperture of radius R. The
normalized far- eld pattern produced by the excitation func-
tionw(θ′, ϕ′) is f(θ, ϕ) = 1

4π

∫∫
w(θ′, ϕ′)ejk0r·p′

dΩ′, where
p′ = (R cosϕ′ sin θ′, R sinϕ′ sin θ′, R cos θ′). Consider a
spatial spherical harmonic excitation of the form w(θ′, ϕ′) =
Yl,m(θ′, ϕ′), where Yl,m(θ, ϕ) is de ned by

Yl,m(θ, ϕ) =

√
(2l + 1)(l −m)!

4π(l +m)!
ejmϕPm

l (cos θ), (2)
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where Pm
l (cos θ) is the associated Legendre function. The

associated Legendre function is de ned by:{
Pm

l (cos θ) = sinm θ dmPl(cos θ)
d cosm θ for m ≥ 0

Pm
l (cos θ) = (−1)m (l+m)!

(l−m)!P
−m
l (cos θ) for m < 0

(3)
The corresponding far- eld pattern can be expressed as

fl,m(θ, ϕ) = jljl(k0R)Yl,m(θ, ϕ), (4)

relying on an expansion of an individual far- eld pattern into
spherical harmonics

ejk0r·p′
= 4π

∑
l′,m′

jl′jl′(k0R)Yl′,m′(θ, ϕ)Y ∗l′,m′(θ′, ϕ′)

with l′ = 0, 1, 2, . . . ,+∞ and |m′| ≤ l′, (5)

where jl(k0R) is the spherical Bessel function of the rst kind
of order l. Note that the far- eld pattern has the same angular
variation as the excitation and is proportional to the spherical
Bessel function. Let L be the highest order mode that can be
excited by the array at a reasonable strength. A rule of thumb
for determining L is L = �k0R�, since jl(k0R) decays ex-
ponentially when l exceeds its argument k0R. The spherical
harmonics Yl,m(θ, ϕ) do not exhibit an exponential increase
as a function of l, thus for spherical phase modes of order
l > L and |m| ≤ l, fl,m(θ, ϕ) is small. The number of spher-
ical phase modes that can be excited at a reasonable strength
is thus (L+ 1)2.

4. SPHERICAL PHASE MODE EXCITATION WITH
A SAMPLED APERTURE

For an N element spherical array, the normalized beamform-
ing weight vector to excite the array with phase mode (l,m),
l ≤ L and |m| ≤ l, is a sampled version of wl,m(θ′, ϕ′) =
Yl,m(θ′, ϕ′)

wH
l,m =

4π
N

[w1
l,mYl,m(θ1, ϕ1), w2

l,mYl,m(θ2, ϕ2),

. . . , wN
l,mYl,m(θN , ϕN )]. (6)

For mode orders l ≤ L, the resulting array pattern can be
expressed as

fs
l,m(θ, ϕ) =

4π
N

N∑
n=1

wn
l,mYl,m(θn, ϕn)ejk0r·pn

= 4π
∑
l′,m′

jl′jl′(k0R)Yl′,m′(θ, ϕ)

.

N∑
n=1

4π
N
wn

l,mYl,m(θn, ϕn)Y ∗l′,m′(θn, ϕn) (7)

The superscript s denotes sampled aperture. We desire that
the spherical array with a discrete aperture behaves in a simi-
lar fashion as a spherical array with a continuous aperture. In
order that a spherical array with a discrete aperture behaves
like a spherical array with continuous aperture, it is necessary
that

4π
N

N∑
n=1

wn
l,mYl,m(θn, ϕn)Y ∗l′,m′(θn, ϕn) = δl−l′δm−m′ ,

∀l, l′ ≤ L and |m|, |m′| ≤ l, (8)

where δn denotes a Kronecker delta function at n = 0. To
obtain this goal, we still have the positions of the antenna el-
ements (θn, ϕn) and the weights wn

l,m at our disposal. In the
particular case of a circular array, the antenna elements are
placed uniformly over the aperture. There exists a minimal
number of antenna elements which are required such that the
array behaves like a circular array with a continuous aper-
ture. This minimal number of antennas only depends on the
dimensions of the array [3]. For a spherical array, similar con-
ditions are valid. However, there only exists a limited number
of con gurations that sample a sphere uniformly. These con-
gurations correspond to the vertices of the platonic solids.

Hardin and Sloane [5] proposed the nearly uniform sampling
of a sphere, which offers a much wider range of array con g-
urations. In combination with equal sampling weights, it is
equired that for nearly uniform sampling

4π
N

N∑
n=1

Y ∗l′,m′(θn, ϕn)Yl,m(θn, ϕn) = δl−l′δm−m′ (9)

is valid for l + l′ < Lmax, where Lmax depends on the num-
ber of sample points N . In order that all signi cant spherical
phase modes (l ≤ L) can be excited correctly, it is necessary
that 2L ≤ Lmax. There exists a minimal number of antenna
elements, wherefore Lmax = 2L.

5. SPHERICAL ESPRIT ALGORITHM

We consider a spherical array withN antenna elements. Only
spherical phase modes of order l ≤ L can be excited at rea-
sonable strength. The number of antenna elements N is cho-
sen such that the corresponding Lmax ≥ 2L. The discussion
of Section 4 dictates that the beamforming matrix VH , where

V = [V0

...V1

... . . .
...VL],

Vl =

√
N

4π
[wl,−l

... . . .
...wl,−1

...wl,0

...wl,1

... . . .
...wl,l], (10)

and wl,m is de ned in (6), performs the following mapping

ao(θ, ϕ) = VHa(θ, ϕ) = [ao,0(θ, ϕ)T
... . . .

...ao,L(θ, ϕ)T ]T

(11)
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where

ao,l(θ, ϕ) =
√

4πNjljl(k0R)Yl(θ, ϕ)

=
√

4πNjljl(k0R)[Yl,−l(θ, ϕ), . . . , Yl,l(θ, ϕ)]T . (12)

Consider extracting three subvectors of size L2 from the
spherical phase mode manifold ao(θ, ϕ), as a(i)(θ, ϕ) =
Δ(i)ao(θ, ϕ), i = −1, 0, 1, where the selection matrix Δ(i)

acts on each subvector ao,l(θ, ϕ) (de ned in (12)) of ao(θ, ϕ).
The selection matrices Δ(−1), Δ(0) and Δ(1) select the rst,
middle, and last 2l − 1 elements from ao,l(θ, ϕ). It is clear
that Δ(i)ao,0(θ, ϕ) = 0. The three subvectors a(i)(θ, ϕ) can
be related to each other by a recursive relationship between
spherical harmonics.

2mYl,m(θ, ϕ) + λ+
lmYl,m+1(θ, ϕ) tan θe−jϕ

+ λ−lmYl,m−1(θ, ϕ) tan θejϕ = 0, (13)

where λ±lm =
√

(l ∓m)(l ±m+ 1). This leads to the rela-
tionship:

2Γa(0) +Λ+a(1)μ∗ +Λ−a(−1)μ = 0, (14)

where μ = tan θejϕ. The L2 × L2 diagonal matrices Γ and
Λ± are de ned by

Γ = diag{0,−1, 0, 1, . . . ,−L+ 1, . . . , L− 1} (15)

and

Λ± = diag{λ±1,0, λ
±
2,−1, λ

±
2,0, λ

±
2,1, . . .

, λ±L,−L+1, . . . , λ
±
L,L−1}. (16)

Let A = [ao(θ1, ϕ1), ao(θ1, ϕ1), . . . , ao(θP , ϕP )] be the (L+
1)2 × P DOA matrix in the (L + 1)2-dimensional spherical
phase mode space, where P is the number of sources inci-
dent on the spherical array. Furthermore, let A(i) = Δ(i)A,
i = −1, 0, 1, where the selection matrices Δ(i) were de ned
previously. Relying on (14), A(−1), A(0) and A(1) are related
by

2ΓA(0) +Λ+A(1)Φ∗ +Λ−A(−1)Φ = 0, (17)

where
Φ = diag{μ1, . . . , μP }. (18)

Let S be an (L+ 1)2 × P matrix whose columns spanR{A}
such that S = AT, where T is an unknown P × P matrix.
S can be obtained from an EVD of the covariance matrix
formed in phase mode space. Let S(i) = Δ(i)S, i = −1, 0, 1.
It follows from (17) that 2ΓS(0) + Λ+S(1)(T−1Φ∗T) +
Λ−S(−1)(T−1ΦT) = 0. Rewriting this equation in block
matrix form, we have

2ΓS(0) + EΨ = 0 (19)

x y

z

source 2

source 1

Fig. 1. Spherical array con guration of 36 antennas with two
sources arriving at the sphere.

where E = [Λ−S(−1)
...Λ+S(1)] and Ψ =

[
T−1ΦT
T−1Φ∗T

]
.

(20)
Note, E is a L2 × 2P -matrix and Ψ is a 2P × P -matrix.
When L2 > 2P , (19) is overdetermined and can be shown to
have a unique solutionΨ. One can thus solve (19) forΨ and
compute the eigenvalues of either the top or bottom P × P
subblock to determine μi = tan θie

jϕi , i = 1, . . . , P . The
estimates of the elevation and azimuth angles of the ith source
follow from θ̂i = tan−1 |μ̂i| and ϕ̂i = arg(μ̂i), respectively.
The algorithm based on this development, spherical ESPRIT,
is closed form and provides automatically paired azimuth and
elevation estimates.

6. SIMULATIONS

We demonstrate the ef cacy of spherical ESPRIT by some
simulations. A spherical array of radius R = λ/3 was em-
ployed. This means that spherical phase modes up to L =
�k0R� = 3 can be excited at a reasonable strength. Con-
sider N = 36 antenna elements in the spherical array. For
this con guration Lmax = 8 > 2L, such that this array be-
haves like a continuous spherical aperture. Two equipow-
ered sources in the far eld of the array with arrival angles
(θ1, ϕ1) = (23◦, 150◦) and (θ2, ϕ2) = (65◦, α) were con-
sidered. The azimuth angle of the second source is varied
from 0◦ to 360◦ in steps of 20◦. The sources were highly
correlated with a correlation coef cient of ρ = 0.9ejπ/4 at
the array center. The number of snapshots was K = 64 and
sample statistics were computed from 200 independent tri-
als. The SNR level was 20dB, where the SNR quoted is per
source per array element. In Fig. 1 the antenna array con gu-
ration is shown, where the 36 antennas are distributed nearly
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Fig. 2. Performance of the spherical ESPRIT estimators.

uniformly over the sphere. The two directions-of-arrival of
the impinging sources are also indicated. Notice that, since
the second source has a varying azimuth angle, the distance
between the DOAs of the two sources varies. In Fig. 2 we
observe the standard deviations (in radians) of the estimated
angles-of-arrival. The azimuth angles of the sources are es-
timated with the highest accuracy when the sources are close
to each other. For the elevation estimates it is just the op-
posite. In Fig. 2 the corresponding Cramer Rao bounds for
the estimated parameters are also plotted. It is clear that the
spherical ESPRIT algorithm is not capable to deliver DOA es-
timates with an accuracy that is very close to the correspond-
ing CRBs. For ESPRIT-based algorithms, such as ESPRIT
and UCA-ESPRIT, this conclusion is generally valid. It is
clear that the proposed algorithm is remarkable for its com-
putational simplicity, but this affects the ultimate accuracy of
the estimates. This has to be put into perspective, because
in the considered simulated example the most inaccurate es-
timate (estimate of θ2 when ϕ2 = 150◦) has a mean error of
3.4◦, which is only a fraction of the 3dB beamwidth of the
cophasal beam steered spherical array.
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