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ABSTRACT

Two computationally efficient high-resolution methods are pro-
posed for direction-of-arrival (DOA) estimation in arbitrary non-
uniform sensor arrays. Our first algorithm is based on the fact that
the spectral MUSIC function is periodic in angle. Expanding this
function using Fourier series, we reformulate the DOA estimation
problem as an equivalent polynomial rooting problem. Our second
approach applies the inverse Fourier transform to the so-obtained
root-MUSIC polynomial to compute the null-spectrum without any
polynomial rooting, using a simple line search. The proposed tech-
niques are shown to offer substantially improved performance-to-
complexity tradeoffs as compared to the existing root-MUSIC-type
methods applicable to non-uniform arrays.

Index Terms— Direction-of-arrival estimation, non-uniform se-
nsor arrays, root-MUSIC

1. INTRODUCTION

The multiple signal classification (MUSIC) algorithm [1], [2] is one
of the most popular and widely used subspace-based techniques for
estimating the DOAs of multiple signal sources. The conventional
(spectral) MUSIC algorithm involves, however, a computationally
demanding spectral search over the angle and, therefore, its imple-
mentation can be prohibitively expensive in real-world applications.
To reduce the computational complexity of MUSIC, a numerically
efficient search-free modification of this approach has been proposed
in [3]. The latter algorithm is commonly referred to as root-MUSIC
because it exploits polynomial rooting instead of spectral search.
Although the root-MUSIC technique enjoys a substantially reduced
computational complexity and an improved threshold estimation per-
formance as compared to the spectral MUSIC approach [4], it is only
applicable to uniform linear arrays (ULAs) or non-uniform arrays
whose sensors are restricted to lie on a uniform grid. Several exten-
sions of root-MUSIC to a more general class of subarray-based array
geometries have been proposed in [5] and [6], but these geometries
still remain quite specific as they require the sensors of each subarray
to belong to a uniform grid.

There have been several promising attempts to extend the con-
cept of root-MUSIC to arbitrary non-uniform array geometries. For
example, the approach of [7] uses the idea of interpolating a vir-
tual ULA and applying the standard root-MUSIC technique to the
virtual array observations. However, the performance of this inter-
polated root-MUSIC technique can be substantially limited by the
array mapping errors [7], [8].

An interesting approach to extend root-MUSIC to non-uniform
arrays of arbitrary geometry has been recently reported in [9]. This

approach uses the idea of [10] to model the non-uniform array steer-
ing vector as a product of a matrix that depends only on the array
parameters and a Vandermonde vector depending only on the angle.
The Vandermonde structure of the latter vector is exploited in [9] to
obtain a polynomial whose roots can be used to estimate the source
DOAs.

In this paper, we propose an alternative approach referred to as
Fourier-domain (FD) root-MUSIC that extends the concept of root-
MUSIC to the case of non-uniform arrays of arbitrary geometry. Our
technique exploits the fact that the null-spectrum MUSIC function
is periodic in angle and uses the truncated Fourier series expansion
of this function to reformulate the DOA estimation problem as a
polynomial rooting problem.

As the order of the FD root-MUSIC polynomial is entirely de-
termined by the number of terms used in the truncated Fourier se-
ries, and since the resulting DOA estimation performance can suffer
from truncation errors, the order of the FD root-MUSIC polynomial
should be chosen rather high. Therefore, to avoid the polynomial
rooting step and further reduce the computational complexity, we
use the idea of [11] and apply the inverse Fourier transform to the
FD root-MUSIC polynomial to compute the null-spectrum and ob-
tain the source DOAs by means of a simple line search.

It is demonstrated that the proposed techniques offer computa-
tionally more attractive implementations and/or an improved DOA
estimation performance as compared to the methods of [7] and [9].

2. BACKGROUND

Let an array of N omnidirectional sensors receive signals from L
(L < N) narrowband far-field sources with the unknown DOAs
{θ1, . . . , θL}. The N × 1 array snapshot vector at time k can be
modeled as [1]-[4]

x(k) = A(θ)s(k) + n(k) (1)

where θ = [θ1, . . . , θL]T is the L × 1 vector of signal DOAs,

A(θ) = [a(θ1), . . . , a(θL)] (2)

is the N × L signal steering matrix, s(k) is the L × 1 vector of
signal waveforms, n(k) is the N × 1 vector of sensor noise, and
(·)T denotes the transpose.

Assuming a non-uniform array of arbitrary geometry, the N × 1
steering vector can be expressed as

a(θ) =
h
ej 2π

λ
(x1 sin θ+y1 cos θ), . . . , ej 2π

λ
(xN sin θ+yN cos θ)

iT

(3)

where λ is the signal wavelength, j =
√−1, and {xi, yi} are the

coordinates of the ith array sensor.
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The N × N array covariance matrix can be written as [1]-[4]

Rx = E{x(k)xH(k)} = ARsAH + σ2I (4)

where Rs = E{s(k)sH(k)} is the source covariance matrix, σ2 is
the sensor noise variance, I is the identity matrix, E(·) denotes the
statistical expectation, and (·)H stands for the Hermitian transpose.

In practice, the exact array covariance matrix Rx is unavailable,
and its sample estimate

R̂x =
1

K

KX
k=1

x(k)xH(k) (5)

is used, where K is the number of snapshots.
The eigendecomposition of the sample covariance matrix (5) can

be written as [1]-[4]

R̂x = ÊSΛ̂SÊ
H

S + ÊN Λ̂N Ê
H

N (6)

where the orthonormal columns of ÊS and ÊN contain the signal-
and noise-subspace eigenvectors of R̂x , respectively, and the di-
agonal matrices Λ̂S and Λ̂N are built from the signal- and noise-
subspace eigenvalues of R̂x , respectively.

The conventional MUSIC null-spectrum function can be expre-
ssed as [1]

f(θ) = aH(θ)ÊN Ê
H

Na(θ) = ‖ÊH

Na(θ)‖2
(7)

where ‖ · ‖ is the vector 2-norm. The spectral MUSIC technique es-
timates the signal DOAs from the minima of this function by means
of a search over θ.

The key idea of the array interpolation method [7] is to inter-
polate a virtual ULA for preliminary specified angular sectors using
actual non-uniform array data. Then, the root-MUSIC technique can
be applied to the interpolated array observations.

Another root-MUSIC method for non-uniform arrays has been
proposed in [9]. Using the results of [10], it can be shown that for
any arbitrary array, the steering vector can be approximated as

a(θ) ≈ Gb(θ) (8)

where G is an N ×M matrix that depends only on the array param-
eters, and

b(θ) =
h
e−j M−1

2 θ, . . . , ej M−1
2 θ

iT

is an M × 1 Vandermonde vector which depends only on θ and
M . The truncation parameter M characterizes the accuracy of the
approximation used in (8). Specifically, equation (8) is exact only
for M → ∞, and the approximation in (8) becomes more accurate
when increasing M .

The authors of [9] have proposed to use the approximation (8)
for some finite M to rewrite the MUSIC null-spectrum (7) in the
form

f(θ) = aH(θ)ÊN Ê
H

Na(θ)

≈ bH(θ)GHÊN Ê
H

NGb(θ)

= bT (1/z)GHÊN Ê
H

NGb(z) � g(z) (9)

where z � ejθ , and the degree of the polynomial g(z) is 2M − 2.
It is suggested in [9] to obtain the signal DOAs from the closest to
the unit circle roots of g(z) in the way similar to that used in the
conventional root-MUSIC technique.

Several ways to compute the matrix G have been discussed in
[10] and [9], such as the least squares (LS) approach and an ap-
proach that determines each element of G via the inverse discrete
Fourier transform (IDFT) of different components of the steering
vector a(θ) taken at different angles. The authors of [9] mention
that, irrespectively of the chosen way to compute G, the parame-
ter M should be taken large enough (typically M > N and often
M � N ) to achieve an acceptable DOA estimation performance.

3. FOURIER-DOMAIN ROOT-MUSIC

In this section, we will develop an alternative polynomial rooting
based approach to DOA estimation in arbitrary non-uniform arrays.
Let us make use of the fact that, according to (3), the MUSIC null-
spectrum (7) is a periodic function of θ with the period 2π. Then, its
Fourier series expansion yields

f(θ) =

∞X
m=−∞

Fm ejmθ
(10)

where the Fourier coefficients are given by

Fm =
1

2π

Z π

−π

f(θ) e−jmθ dθ. (11)

Truncating the Fourier series in (10) to 2M − 1 points1 and using
the notation z = ejθ , we can approximate f(θ) as

f(θ) �
M−1X

m=−M+1

Fmzm � p(z) (12)

The Fourier coefficients Fm, m = −M + 1, . . . , M − 1 can be
computed using DFT in a standard way. Although in this case a close
approximation of the Fourier series coefficients can be obtained in a
computationally efficient way, the DFT coefficients are not exactly
equal to the Fourier series coefficients due to aliasing introduced by
sampling the null-spectrum f(θ). Hence, we use the following DFT-
based approximation of p(z):

p̃(z) �
M−1X

m=−M+1

F̃mzm
(13)

where F̃m, m = −M + 1, . . . , M − 1 are the DFT coefficients.
According to (13), the degree of p̃(z) is 2M − 2, and the source

DOAs can be obtained by means of rooting this polynomial. Let
us now prove that the roots of (13) satisfy the conjugate reciprocity
property, that is, if z0 is a root of p̃(z), then z′

0 � 1/z∗
0 is also a

root of this polynomial, where (·)∗ stands for the complex conjugate.

Assuming that z0 is a root of p̃(z) and taking into account that F̃ ∗
m =

F̃−m, we have

0 =

M−1X
m=−M+1

F̃mzm
0

=

M−1X
m=−M+1

F̃−mz∗
0

m

=

M−1X
m=−M+1

F̃mz′
0

m
, (14)

1To define the truncation parameter M in a consistent way throughout
this paper, we require that the resulting polynomials for both the proposed
method and the technique of [9] are of the same order 2M − 2.
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Algorithm Computational Complexity

Spectral MUSIC O(N3 + JNL)
Interpolated root-MUSIC [7] O(N3 + IN2L

+ I · degree-N rooting)
Nonuniform root-MUSIC [9] O(N3 + MNL + M2L

+ degree-M rooting)
FD root-MUSIC O(N3 + MNL + M log2 M

+ degree-M rooting)
FD line-search MUSIC O(N3 + MNL + J log J)

Table 1. The orders of computational complexities of spectral MU-
SIC, the algorithms of [7] and [9], and the proposed techniques.

that is, z′
0 = 1/z∗

0 is also a root of p̃(z).
Using the established conjugate reciprocity property, the signal

DOAs can be estimated from the L closest to the unit circle roots of
p̃(z) lying inside this circle.

4. FOURIER-DOMAIN LINE-SEARCH MUSIC

Both the polynomials g(z) and p̃(z) are of degree 2M − 2. There-
fore, as the value of M should be sufficiently large to warrant small
truncation errors, the complexity of finding the roots of these poly-
nomials may be rather high. Motivated by this fact, we will now
consider a modification of the proposed FD root-MUSIC algorithm
that avoids the polynomial rooting step by replacing it with a simple
line search. The key idea of this modified approach follows the work
in [11].

Let us use in (13) zero-padding to 2J−1 (J > M ) values where
2J − 1 is the required number of points of the null-spectrum. Then,
we obtain

p̃(z) =

J−1X
m=−J+1

F̃mzm

=

J−1X
m=−J+1

F̃mejmθ � p̃(θ) (15)

where F̃m = 0 for all values of m that satisfy M−1 < |m| ≤ J−1.
Hence, a total of 2J − 1 uniform in the interval −π ≤ θ ≤ π
samples of the null-spectrum p̃(θ) can be found by applying IDFT

to the zero-padded sequence of the coefficients F̃m, m = −J +
1, . . . , J − 1. As a result, no polynomial rooting is needed anymore,
and the polynomial rooting step is replaced by a line search over θ.

There is an important difference between the spectral search in-
volved in the conventional spectral MUSIC technique and in the pro-
posed FD line-search MUSIC. The spectral search in (7) requires to

compute the matrix-vector product Ê
H

Na(θ) for each sample value
of θ, while the proposed technique uses IDFT (that is computed in
a numerically efficient way using FFT) to obtain the null-spectrum
p̃(θ) for all samples of θ.

5. COMPARISON OF COMPUTATIONAL COMPLEXITIES

The computational complexities of spectral MUSIC, the techniques
of [7] and [9], and the proposed two algorithms are compared in
Table 1. In this table, I denotes the number of angular sectors in
the interpolated root-MUSIC technique, and the number of virtual
sensors in the latter technique is assumed to be of the same order as
the number of actual sensors. As there is a variety of polynomial

2

1

-1

-2

y/λ

-2 -1 1 2

x/λ

Array geometry for example 1
Array geometry for example 2
Virtual array for int. root-MUSIC

Fig. 1. Array geometries used in the first and second examples, and
virtual array geometry used in interpolated root-MUSIC in both ex-
amples.

Fig. 2. DOA estimation RMSEs versus SNR; first example.

rooting algorithms with the cubic and lower complexity [12]-[13],
the orders of complexity of the rooting steps in the second, third,
and fourth techniques of Table 1 are not explicitly shown.

As can be observed from Table 1, the proposed techniques may
offer substantial computational advantages with respect to some of
the existing algorithms developed for non-uniform arrays. In partic-
ular, in the pragmatic case M � N , the computational complexity
of the proposed methods can be substantially smaller than that of the
approach of [9].

6. SIMULATION RESULTS

In all figures, we compare the performances of FD root-MUSIC and
FD line-search MUSIC with that of spectral MUSIC, the techniques
of [7] and [9], and the stochastic Cramér-Rao bound. Throughout
simulations, we assume an array of N = 10 sensors and L = 2
equally powered signal sources with the DOAs θ1 = 13◦ and θ2 =
15◦ relative to the north direction of Fig. 1 where all the array ge-
ometries used in simulations are displayed.

In the first example, all sensor locations have been generated
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Fig. 3. DOA estimation RMSEs versus SNR; second example.

randomly. The geometry of this array is shown in Fig. 1 using dia-
mond marks. Fig. 2 displays the DOA estimation root-mean-square
errors (RMSEs) of all methods tested versus the signal-to-noise ratio
(SNR) for K = 100 snapshots. In FD root-MUSIC, FD line-search
MUSIC, and the technique of [9], M = 50 is taken. In interpo-
lated root-MUSIC, the interpolation sector [0◦, 45◦] is chosen, and
the geometry of the interpolated ULA is shown in Fig. 1 by circle
marks.

In the second example, the circular array is assumed whose ge-
ometry is displayed in Fig. 1 using square marks. Fig. 3 displays
the DOA estimation RMSEs of all methods tested versus SNR for
K = 2000 snapshots. In this figure, M = 24 is chosen for the
proposed FD techniques and the method of [9]. The geometry of the
interpolated ULA as well as the interpolation sector are the same as
in the previous example.

From Figs. 2 and 3, it can be observed that in both examples,
the proposed FD root-MUSIC method consistently outperforms the
other methods tested. These performance improvements are achiev-
ed at high values of SNR. The fact that FD root-MUSIC outperforms
the algorithm of [9] can be explained by substantially lower trun-
cation errors of the FD root-MUSIC approach as compared to the
method of [9]. It also follows from Figs. 2 and 3 that the performance
of FD line-search MUSIC is quite close to that of spectral MUSIC,
but is worse than that of FD root-MUSIC. Such a performance loss
of FD line-search MUSIC with respect to FD root-MUSIC can be
viewed as a price for avoiding the polynomial rooting step in the
line-search MUSIC algorithm.

7. CONCLUSIONS

In this paper, we have developed a novel root-MUSIC-type approach
to DOA estimation in sensor arrays of arbitrary geometry. Our ap-
proach is referred to as Fourier-domain root-MUSIC and exploits
the fact that the null-spectrum MUSIC function is periodic in an-
gle. It uses the truncated Fourier series expansion of this function
to reformulate the DOA estimation problem as a polynomial rooting
problem.

To avoid the polynomial rooting step and further reduce the com-
putational complexity, the inverse Fourier transform has been ap-
plied to the Fourier-domain root-MUSIC polynomial to compute the
null-spectrum and estimate the source DOAs by means of a simple
line search.

It has been demonstrated through simulations with different ar-
ray configurations that the proposed techniques offer attractive alter-
natives to the existing DOA estimation methods applicable to arrays
with arbitrary geometry.
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