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Abstract—MIMO (multiple-input multiple-output) radar is an
emerging technology which has drawn considerable attention.
Unlike the traditional SIMO (single-input multiple-output) radar,
which transmits scaled versions of a single waveform in the
antenna elements, the MIMO radar transmits independent wave-
forms in each of the antenna elements. It has been shown that
MIMO radar systems have many advantages such as high spatial
resolution, improved parameter identifiability, and enhanced flex-
ibility for transmit beampattern design. In the traditional SIMO
radar, the range and Doppler resolutions can be characterized
by the radar ambiguity function. It is a major tool for studying
and analyzing radar signals. Recently, the ambiguity function
has been extended to the MIMO radar case. In this paper, some
mathematical properties of the MIMO radar ambiguity function
are derived. These properties provide insights into the MIMO
radar waveform design. 1

Index Terms— MIMO Radar, Ambiguity Function, Waveform
design, Linear Frequency Modulation (LFM).

I. INTRODUCTION

In traditional SIMO (single-input multiple-output) radar
systems the antenna elements only emit scaled versions of a
single waveform. The MIMO (multiple-input multiple-output)
radar is a system which allows independent waveforms from
the antenna elements. It has been shown that this kind of radar
system has many advantages such as high spatial resolution
[2], excellent interference rejection capability [3], improved
parameter identifiability [4], and enhanced flexibility for trans-
mit beampattern design [5]. Most of the MIMO radar work
so far has ignored the specific details of the waveforms at
the antenna elements. However, the choice of the waveforms
affects the range, Doppler and angular resolutions of the
radar system. In the traditional SIMO radar, the resolution
performance of the radar system is characterized by the
radar ambiguity function. It is a major tool for studying and
analyzing radar signals [6]. Recently, the ambiguity function
has been extended to the MIMO radar case [1]. It turns out
that the radar waveforms affect not only the range and Doppler
resolution but also the angular resolution.
It is well-known that the radar ambiguity function satisfies

some properties such as constant energy and symmetry with
respect to the origin [6]. These properties are very handy tools
for designing and analyzing the radar waveforms. In this paper,
we derive the corresponding properties for the case of MIMO
radar ambiguity functions. The rest of this paper is organized
as follows. Section II reviews the definition of the MIMO
radar ambiguity function. Section III derives the properties of
the MIMO radar ambiguity function, and Section IV concludes
the paper.

1Work supported in parts by the ONR grant N00014-06-1-0011, and the
California Institute of Technology.

II. REVIEW OF MIMO RADAR AMBIGUITY FUNCTION
In a SIMO radar system, the radar ambiguity function is

defined as [6]

|χ(τ, ν)| �
∣∣∣∣
∫ ∞

−∞
u(t)u∗(t + τ)ej2πνtdt

∣∣∣∣ , (1)

where u(t) is the radar waveform. This two-dimensional
function indicates the matched filter output in the receiver
when a delay mismatch τ and a Doppler mismatch ν occur.
The value |χ(0, 0)| represents the matched filter output without
any mismatch. Therefore, the sharper the function |χ(τ, ν)|
around (0, 0), the better the Doppler and range resolution.
Fig. 1 shows two examples of the ambiguity function. These
two ambiguity functions show different Doppler and range
trade-offs. One can see that the LFM pulse has a better range
resolution along the cut where Doppler frequency is zero.

Fig. 1. Examples of ambiguity functions: (a) Rectangular pulse, and (b)
Linear frequency modulation (LFM) pulse with time-bandwidth product 10,
where T is the pulse duration .

The idea of radar ambiguity functions has been extended to
the MIMO radar by San Antonio et al. [1]. In this section, we
will briefly review the definition of MIMO radar ambiguity
functions. We will focus only on the ULA (uniform linear
array) case as shown in Fig. 2. We assume the transmitter
and the receiver are parallel ULAs in the same location. The
spacing between the transmitting elements is dT and the spac-
ing between the receiving elements is dR. The function ui(t)
indicates the radar waveform emitted by the ith transmitter.
Consider a target at (τ, ν, fs) where τ is the delay corre-

sponding to the target range, ν is the Doppler frequency of
the target, and fs is the normalized spatial frequency of the
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Fig. 2. MIMO radar scheme: (a) Transmitter, and (b) Receiver.

target. The demodulated target response in the nth antenna is
proportional to

yτ,ν,fs
n (t) ≈

M−1∑
m=0

um(t − τ)ej2πνtej2πfs(γm+n),

for n = 0, 1, · · · , N − 1, where N is the number of receiving
antennas, um(t) is the radar waveform emitted by the mth
antenna, γ � dT /dR and M is the number of transmitting
antennas. If the receiver tries to capture this target signal with
a matched filter with the assumed parameters (τ ′, ν′, f ′s) then
the matched filter output becomes

N−1∑
n=0

∫ ∞

−∞
yτ,ν,fs

n (t) · (yτ ′,ν′,f ′
s

n )∗(t)dt

=

(
N−1∑
n=0

ej2π(fs−f ′
s)n

)
·

(
M−1∑
m=0

M−1∑
m′=0

∫ ∞

−∞
um(t − τ)u∗m′(t − τ ′)

ej2π(ν−ν′)tdt · ej2π(fsm−f ′
sm′)γ

)
The first part in the right hand side of the equation represents
the spatial processing in the receiver, and it is not affected by
the waveforms {um(t)}. The second part in the right hand side
of the equation indicates how the waveforms {um(t)} affect
the spatial, Doppler and range resolutions of the radar system.
Therefore, we define the MIMO radar ambiguity function
as

χ(τ, ν, fs, f
′
s) �

M−1∑
m=0

M−1∑
m′=0

χm,m′(τ, ν)ej2π(fsm−f ′
sm′)γ , (2)

where

χm,m′(τ, ν) �
∫ ∞

−∞
um(t)u∗m′(t + τ)ej2πνtdt. (3)

Note that the MIMO radar ambiguity function can not be
expressed as a function of the difference of the spatial
frequencies, namely fs − f ′s. Therefore, we need both the
target spatial frequency fs and the assumed spatial frequency
f ′s to represent the spatial mismatch. We call the function
χm,m′(τ, ν) the cross ambiguity function because it is
similar to the SIMO ambiguity function defined in (1) except
it involves two waveforms um(t) and um′(t). Fixing τ and
ν in (2), one can view the ambiguity function as a scaled

two-dimensional Fourier transform of the cross ambiguity
function χm,m′(τ, ν) on the parameters m and m′. The value
|χ(0, 0, fs, fs)| represents the matched filter output without
mismatch. Therefore, the sharper the function |χ(τ, ν, fs, f

′
s)|

around the line {(0, 0, fs, fs)}, the better the radar system
resolution.

III. PROPERTIES OF THE MIMO RADAR AMBIGUITY
FUNCTION

We now derive some new properties of the MIMO radar
ambiguity function defined in (2). The properties are similar
to some of the properties of the SIMO ambiguity functions
(e.g., see [6]). We normalize the energy of the transmitted
waveform to unity. That is,∫ ∞

−∞
|um(t)|2dt = 1,∀m (4)

The following property characterizes the ambiguity function
when there exists no mismatch.

Property 1. If
∫∞
−∞ um(t)u∗m′(t)dt = δm,m′ , then

χ(0, 0, fs, fs) = M,∀fs.

Proof: We have

χm,m′(0, 0) =
∫ ∞

−∞
um(t)u∗m′(t)dt = δm,m′ .

Substituting the above equation into (2), we obtain

χ(0, 0, fs, fs) =
M−1∑
m=0

M−1∑
m′=0

δm,m′ej2πγ(fsm−fsm′)

=
M−1∑
m=0

ej0 = M. �

This property says that if the waveforms are orthogonal, the
ambiguity function is a constant along the line {(0, 0, fs, fs)}
which is independent of the waveforms {um(t)}. This means
the matched filter output is always a constant independent of
the waveforms, when there exists no mismatch.
The following property characterizes the integration of the

MIMO radar ambiguity function along the line {0, 0, fs, fs}
even when the waveforms are not orthogonal.

Property 2.

χ(0, 0, fs, fs) ≥ 0,
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and if γ is an integer, then∫ 1

0

χ(0, 0, fs, fs)dfs = M.

Proof: By using the definitions in (2) and (3), we have

χ(0, 0, fs, fs) =
∫ ∞

−∞

∣∣∣∣∣
M−1∑
m=0

um(t)ej2πfsmγ

∣∣∣∣∣
2

dt ≥ 0

By using the definitions in (2) and (3) and changing variable,
we obtain∫ 1

0

χ(0, 0, fs, fs)dfs

=
∫ 1

0

M−1∑
m=0

M−1∑
m′=0

χm,m′(0, 0, )ej2πfsγ(m−m′)dfs

=
M−1∑
m=0

M−1∑
m′=0

χm,m′(0, 0, )δm,m′ = M �

This property says that when γ is an integer, the integration
of the MIMO radar ambiguity function along the line
{0, 0, fs, fs} is a constant, no matter how waveforms are
chosen. The following property characterizes the energy of
the cross ambiguity function.

Property 3.∫ ∞

−∞

∫ ∞

−∞
|χm,m′(τ, ν)|2dτdν = 1.

Proof: We have∫ ∞

−∞

∫ ∞

−∞
|χm,m′(τ, ν)|2dτdν

=
∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
um(t)u∗m′(t + τ)ej2πνtdt

∣∣∣∣
2

dνdτ

=
∫ ∞

−∞

∫ ∞

−∞
|um(t)u∗m′(t + τ)|2 dtdτ,

where we have used Parseval’s theorem [7] to obtain the last
equality. By changing variables, we obtain

∫ ∞

−∞

∫ ∞

−∞
|um(t)u∗m′(t + τ)|2 dtdτ =∫ ∞

−∞
|um(t)|2dt

∫ ∞

−∞
|um′(t)|2dt = 1 �

This property states that the energy of the cross ambiguity
function is a constant, independent of the waveforms um(t)
and um′(t). In the special case of m = m′, this property
implies that the SIMO radar ambiguity function defined in (1)
has constant energy [6]. The following property characterizes
the energy of the MIMO radar ambiguity function.

Property 4. If γ is an integer, then∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
|χ(τ, ν, fsf

′
s)|2dτdνdfsdf

′
s = M2.

Proof: By using the definition of MIMO radar ambiguity
function in (2) and performing appropriate change of variables,
we have∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
|χ(τ, ν, fsf

′
s)|2dτdνdfsdf

′
s

=
1
γ2

∫ ∞

−∞

∫ ∞

−∞

∫ γ

0

∫ γ

0∣∣∣∣∣
M−1∑
m=0

M−1∑
m=0

χm,m′(τ, ν)ej2π(fsm−f ′
sm′)

∣∣∣∣∣
2

dfsdf
′
sdτdν

(5)

Using Parserval’s theorem and applying Property 3, the above
integral reduces to∫ ∞

−∞

∫ ∞

−∞

M−1∑
m=0

M−1∑
m′=0

|χm,m′(τ, ν)|2dτdν =
M−1∑
m′=0

M−1∑
m′=0

1 = M2

�
This property states that when γ is an integer, the energy

of the MIMO radar ambiguity function is a constant which is
independent of the waveforms {um(t)}. For example, whether
we choose γ = 1 or γ = N , the energy of the MIMO
radar ambiguity function is the same. Recall that Property 2
states that the integration of MIMO radar ambiguity function
along the line {(0, 0, fs, fs} is also a constant. This implies
that in order to make the ambiguity function sharp around
{0, 0, fs, fs}, we have to spread the energy of the ambiguity
function evenly on the available time and bandwidth.
For the case that γ is not an integer, we can not directly

apply Parserval’s theorem. In this case, the energy of the
ambiguity function actually depends on the waveforms
{um(t)}. However, the following property characterizes the
range of the energy of the MIMO radar ambiguity function.

Property 5.

�γ�2
γ2

M2 ≤
∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
|χ(τ, ν, fsf

′
s)|2dτdνdfsdf

′
s

≤ �γ	2
γ2

M2

where �γ� is the largest integer ≤ γ, and �γ	 is the smallest
integer ≥ γ.
Proof: Using (5), we have∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
|χ(τ, ν, fsf

′
s)|2dτdνdfsdf

′
s

≤ 1
γ2

∫ ∞

−∞

∫ ∞

−∞

∫ �γ�

0

∫ �γ�

0∣∣∣∣∣
M−1∑
m=0

M−1∑
m=0

χm,m′(τ, ν)ej2π(fsm−f ′
sm′)

∣∣∣∣∣
2

dfsdf
′
sdτdν

Using Parserval’s theorem and applying Property 3, the above
value equals

�γ	2
γ2

∫ ∞

−∞

∫ ∞

−∞

M−1∑
m=0

M−1∑
m′=0

|χm,m′(τ, ν)|2dτdν =
�γ	2
γ2

M2

The lower bound can be obtained similarly. �
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For the case that γ is not integer, the energy of the MIMO
radar ambiguity function can actually be affected by the
waveforms {um(t)}. However, the above property implies
that the amount of the energy which can be affected by the
waveforms is small. Using similar lines of argument, we can
show that when γ is not an integer, Property 2 can be replaced
with

M
�γ�
γ

≤
∫ 1

0

χ(0, 0, fs, fs)dfs ≤ M
�γ	
γ

.

The following property characterizes the symmetry of the
cross ambiguity function.

Property 6.
χm,m′(−τ,−ν) = χ∗m′,m(τ, ν)e−j2πντ

Proof: By the definition of the cross ambiguity function (3)
and changing variables, we have

χm,m′(−τ,−ν) =
∫ ∞

−∞
um(t)u∗m′(t − τ)e−j2πνtdt

=
∫ ∞

−∞
um(t + τ)u∗m′(t)e−j2πν(t+τ)dt

= χ∗m′,m(τ, ν)e−j2πντ �
Using the above property, we can obtain the following

property of the MIMO radar ambiguity function.

Property 7.
χ(−τ,−ν, fs, f

′
s) = χ∗(τ, ν, f ′s, fs)e−j2πντ

Proof: Using the definition of the MIMO radar ambiguity
function (2) and Property 6, we have

χ(−τ, ν, fs, f
′
s)

=
M−1∑
m=0

M−1∑
m′=0

χm,m′(−τ,−ν)ej2πγ(fsm−f ′
sm′)

=
M−1∑
m=0

M−1∑
m′=0

χ∗m′,m(τ, ν)e−j2πντej2πγ(fsm−f ′
sm′)

=

(
M−1∑
m=0

M−1∑
m′=0

χm′,m(τ, ν)ej2πγ(f ′
sm′−fsm)

)∗
e−j2πντ

= χ∗(τ, ν, f ′s, fs)e−j2πντ �
This property implies that when we design the waveform,

we only need to focus on the region {(τ, ν, fs, f
′
s)|ν ≥ 0}

or the region {(τ, ν, fs, f
′
s)|fs ≥ f ′s} of the MIMO radar

ambiguity function. For example, given two spatial frequency
fs and f ′s it is sufficient to study only χ(τ, ν, fs, f

′
s)

because the function χ(τ, ν, f ′s, fs) can be deduced from the
symmetry property. The following property characterizes the
cross ambiguity function of the linear frequency modulation
(LFM) signal.

Property 8. If χm,m′(τ, ν) =
∫∞
−∞ um(t)u∗m′(t + τ)ej2πνtdt

then

χLFM
m,m′ (τ, ν) �

∫ ∞

−∞

(
um(t)ejπkνt2

)
·(

um′(t + τ)ejπkν(t+τ)2
)∗

ej2πνtdt

= χm,m′(τ, ν − kτ)e−jπkτ2

Proof: From direct calculation, we have

χLFM
m,m′ (τ, ν) =

∫ ∞

−∞
um(t)u∗m′(t + τ) ·

ejπk(−2tτ+τ2)e−j2πνtdt

= χm,m′(τ, ν − kτ)e−jπkτ2 �
This property says that linear frequency modulation shears

off the cross ambiguity function. We use this property to
obtain the following result for the MIMO radar ambiguity
function.

Property 9.
If χ(τ, ν, fs, f

′
s) =

∑M−1
m=0

∑M−1
m′=0 χm,m′(τ, ν)ej2πγ(fsm−f ′

sm′)

then

χLFM (τ, ν, fs, f
′
s) �

M−1∑
m=0

M−1∑
m′=0

χLFM
m,m′ (τ, ν)ej2πγ(fsm−f ′

sm′)

= χ(τ, ν − kτ, fs, f
′
s)e

jkντ2

We omit the proof because this property can be easily
proven by just applying Property 8. This property states
that adding LFM modulations shears off the MIMO radar
ambiguity function. This shearing can improve the range
resolution because it compresses the ambiguity function along
the direction (τ, 0, fs, fs) [6].

IV. CONCLUSIONS
In this paper, we have derived several properties of the

MIMO radar ambiguity function and the cross ambiguity
function. These results are derived for the ULA case. To
summarize, Property 1 and 2 characterize the MIMO radar
ambiguity function along the line {(0, 0, fs, fs)}. Properties
3, 4, and 5 characterize the energy of the cross ambiguity
function and the MIMO radar ambiguity function. These
properties imply that we can only spread the energy of the
MIMO radar ambiguity function evenly on the available time
and bandwidth because the energy is confined. Properties 6 and
7 show the symmetry of the cross ambiguity function and the
MIMO radar ambiguity function. These properties imply that
when we design the waveform, we only need to focus on the
region {(τ, ν, fs, f

′
s)|ν ≥ 0} of the MIMO radar ambiguity

function. Property 8 and 9 show the shear-off effect of the
LFM waveform. This shearing improves the range resolution.
We believe these properties will be helpful for designing and
analyzing the MIMO radar waveforms.
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