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ABSTRACT
In the general area of radar detection, estimation of the clutter

covariance matrix is an important point. This matrix com-

monly exhibits a persymmetric structure: this is the case for

instance for active systems using a symmetrically spaced lin-

ear array or pulse train. In this context, this paper provides

a new Gaussian adaptive detector called the Persymmetric

Adaptive Matched Filter (P-AMF). Its theoretical distribution

is derived allowing adjustment of the detection threshold for

a given Probability of False Alarm (PFA). Simulations results

highlight the improvement in term of probability of detection

(PD) of the P-AMF in comparison with the classical Adaptive

Matched Filter (AMF).

Index Terms— Adaptive signal detection, Parameter es-

timation, Maximum Likelihood Estimation, Covariance ma-

trices, Radar detection.

1. INTRODUCTION

One of the major problems in radar detection consists in de-

tecting a known signal p ∈ C
m corrupted by an additive clut-

ter c. Classically, this problem can be stated as the following

binary hypothesis test:{
H0 : y = c, yk = ck, for 1 ≤ k ≤ K ,
H1 : y = A p + c, yk = ck, for 1 ≤ k ≤ K ,

(1)

where y is the complex m-vector of the received signal, A
is an unknown complex target amplitude and c is a complex

zero-mean Gaussian m-vector with covariance matrix M =
E[c cH ]. Under both hypotheses, it is assumed that K signal-

free data yk are available for clutter parameters estimation.

The yk’s are the so-called secondary data. They are indepen-

dent and identically distributed (i.i.d) with the same distribu-

tion as c.

In the sequel, the real (resp. complex) Gaussian distribu-

tion with zero-mean and covariance matrix M is denoted by

N (0, M) (resp. CN (0, M)), E[.] stands for the expectation

operator, H denotes the conjugate transpose, ∗ the conjugate

and � the transpose operator, ‖ . ‖ is the usual L2-norm, Im is

the m-th order identity matrix and ∼ means ”distributed as”.

When M is known, the Generalized Likelihood Ratio Test

(GLRT) is referred to as the Optimum Gaussian Detector (O-

GD:

ΛOGD =
|pH M−1 y|2
pH M−1 p

H1

≷
H0

λ , (2)

where the detection threshold λ is related to the PFA by: λ =√− ln(Pfa). However, the clutter covariance matrix M is

generally unknown and has to be estimated. For that purpose,

the Maximum Likelihood theory provides the well-known

Sample Covariance Matrix (SCM) built from the secondary

data and defined by:

M̂SCM =
1
K

K∑
k=1

yk yH
k . (3)

Then, substituting M̂SCM for M in (2) leads to the so-called

Adaptive Matched Filter (AMF) test [1]:

ΛAMF =
|pH M̂

−1

SCM y|2
pH M̂

−1

SCM p

H1

≷
H0

λ . (4)

The AMF has the Constant False Alarm Rate (CFAR) prop-

erty and its distribution is known (see e.g. [1, 2, 3]). However,

the AMF exhibits a detection loss in comparison with the

OGD. Moreover, M̂SCM defined by (3) does not take into ac-

count any prior knowledge on the clutter covariance structure.

Many applications can result in a clutter covariance ma-

trix that exhibits some particular structure. Such a situation is

frequently met in radar systems using a symmetrically spaced

linear array for spatial domain processing, or symmetrically

spaced pulse train for temporal domain processing [4, 5]. In

these systems, the clutter covariance matrix M has the per-

symmetric property:

M = Jm M∗ Jm , (5)

where Jm is the m-dimensional antidiagonal matrix having 1

as non-zero elements. The signal vector is also persymmetric,

i.e. it satisfies:

p = Jm p∗ . (6)

The persymmetric structure of M can be exploited to improve

its estimation accuracy compared to the SCM. This approach
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has been followed by [4] in the framework of Kelly’s GLRT

[6]. Our paper is based on another widespread detection test,

the AMF. It studies its statistical performance when using in

(4) the persymmetric Maximum Likelihood (ML) estimate of

the clutter covariance matrix instead of the SCM. The result-

ing detection test is called P-AMF for Persymmetric Adaptive

Matched Filter. One of the main contribution is the derivation

of the P-AMF distribution under hypothesis H0. This allows

the theoretical setting of the detection threshold for a given

PFA.

This paper is organized as follows. Section 2 shows how

the persymmetric structure of the covariance matrix can be

exploited to provide the new P-AMF. Section 3 derives the

statistical distribution of the P-AMF under hypothesis H0.

Section 4 presents simulation results which illustrate the im-

provement in terms of detection performance of the P-AMF

on the conventional AMF.

2. PROBLEM STATEMENT AND PRELIMINARIES

In the context of persymmetric M and p, the problem defined

by (1) will be first reformulated thanks to the following propo-

sition.

Proposition 2.1
Let T be the unitary matrix defined as:

T =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√
2

(
Im/2 Jm/2

iIm/2 −iJm/2

)
for m even

1√
2

⎛⎝ I(m−1)/2 0 J(m−1)/2

0
√

2 0
iI(m−1)/2 0 −iJ(m−1)/2

⎞⎠ for m odd.

(7)

Persymmetric vectors and Hermitian matrices are character-

ized by the following properties:

• p ∈ C
m is a persymmetric vector if and only if T p is a

real vector.

• M is a persymmetric Hermitian matrix if and only if

T M TH is a real symmetric matrix.

Proof 2.1
The proof is straightforward and involves elementary alge-

braic manipulations.

Using previous proposition, the original problem (1) can be

equivalently reformulated as follows. Let us introduce the

transformed primary data x, the transformed secondary data

xk, the transformed clutter vector n, the transformed signal

vector s and the transformed clutter covariance matrix R de-

fined as: x = T y, xk = T yk, s = T p, n = T c, nk = T ck

and R = E(n nH) = E(nk nH
k ) = T M TH .

From proposition 2.1, the transformed signal vector s and

the transformed clutter covariance matrix are both real. Then,

the original problem (1) is equivalent to:{
H0 : x = n xk = nk, for 1 ≤ k ≤ K ,
H1 : x = A s + n xk = nk, for 1 ≤ k ≤ K ,

(8)

where x ∈ C
m, n ∼ CN (0, R), s is a known real vector, R

is an unknown real symmetric matrix. The K transformed

secondary data xk are i.i.d and share the same CN (0, R) dis-

tribution as n. From now on, the problem under study is the

problem defined by (8).

Let us now investigate the ML estimate of the real covariance

matrix R from the K secondary data xk. The main motiva-

tion for introducing the transformed data is that the resulting

distribution of the ML estimate of R is very simple. This was

not the case in [7] when dealing with the original secondary

data yk with persymmetric covariance matrix.

Proposition 2.2
The ML estimate R̂ of real matrix R is unbiased and is given

by:

R̂ = Re(R̂SCM ) , (9)

whereRe(.) stands for the real part and where:

R̂SCM =
1
K

K∑
k=1

xk xH
k = T M̂SCM TH . (10)

2 K R̂ is real Wishart distributed with 2K degrees of freedom.

Proof 2.2
The proof is straightforward and is omitted.

Actually, taking into account the real structure of R (or equiv-

alently the persymmetric structure of M) in the ML estimation

procedure allows to virtually double the number of secondary

data. Let us now consider the AMF for the detection problem

(8) based on the estimate R̂ defined by (9). This leads to the

following detection test, called the P-AMF,

ΛPAMF =
|s�R̂

−1
x|2

s�R̂
−1

s

H1

≷
H0

λ , (11)

or equivalently, in terms of the original data,

ΛPAMF =
|pHTH [Re(TM̂SCM TH)]−1Ty|2
pHTH [Re(TM̂SCM TH)]−1Tp

H1

≷
H0

λ . (12)

Note that s and R̂ are real in (11), while x is complex. The

aim of this paper is twofold:

• to derive the statistical distribution of ΛPAMF under

hypothesis H0 in order to set the detection threshold λ for a

given PFA;

• to emphasize the improvement of the P-AMF on the

AMF in terms of probability of detection.
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3. STATISTICAL ANALYSIS OF THE P-AMF

The purpose of this section is to derive the statistical distri-

bution of the P-AMF and, as a consequence, to establish the

relationship between the PFA and the detection threshold λ.

Proposition 3.1
• Under H0, the Probability Density Function (PDF) of

ΛPAMF , defined by (11), is:

p(z) =
(2K −m + 1) (2K −m + 2)

2 K (2K + 1)

× 2F1

(
2K −m + 3

2
,
2K −m + 4

2
;
2K + 3

2
;− z

K

)
,

(13)

where 2F1 is the hypergeometric function [8] defined by

2F1(a, b; c; λ) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1 (1− t)c−b−1

(1− tλ)a
dt .

• The relationship between the PFA and the detection thresh-

old λ is thus:

PFA = 2F1

(
2K −m + 1

2
,
2K −m + 2

2
;
2K + 1

2
;− λ

K

)
.

Proof 3.1
Due to limited space, the proof is just outlined. Let e1 =
(1, 0, ..., 0)�, let R = R1/2 R�/2 be a standard factoriza-

tion of R and let Q be a real unitary matrix such that e1 =
Q R−1/2 s. Let us set

Ŵ = 2K Q R−1/2 R̂ R−�/2 Q� and z = QR−1/2x .

Ŵ is real Wishart distributed with 2K degrees of freedom and

parameter matrix Im, z ∼ CN (0, Im). Then, the test statistic

ΛPAMF (11) may be rewritten as:

ΛPAMF = 2K

(
e�1 Ŵ

−2
e1

e�1 Ŵ
−1

e1

)
|e�1 Ŵ

−1
x|2

e�1 Ŵ
−2

e1

= 2K b a .

(14)

The conditional distribution of 2a given Ŵ is a Chi square

distribution with 2 degrees of freedom denoted by χ2
2. This

distribution does not involve Ŵ, and a ∼ 1
2χ2

2 is therefore

independent of b. Now, to derive the PDF of b, we use the

Bartlett matrix decomposition [9] Ŵ = U.U� where U =
(ui,j)1≤i≤j≤m is an upper triangular matrix whose random

elements are independent and distributed as:

u2
i,i ∼ χ2

2K+i−m and ui,j ∼ N (0, 1) for i < j.

Let u′i,j be the elements of the matrix U−1, u′1,k the vector

built with the k ≤ m first non-zero elements of the first row

of U−1 and uk,k the vector built with the k ≤ m first non-zero

elements of the k-th column of U. Given that U−1 U = Im,

the upper-left corner element of U−1 is u′1,1 = u−1
1,1 and the

vector u′1,k must satisfy u′�1,k uk,k +u′1,k+1 uk+1,k+1 = 0 , for

1 < k < m. This leads to:

u′21,k+1 =
|u′�1,k uk,k|2
‖ u′1,k ‖2

‖ u′1,k ‖2
u2

k+1,k+1

= αk

‖ u′1,k ‖2
u2

k+1,k+1

. (15)

Conditioned to u′1,k, αk is χ2
1-distributed and is independent

of u′1,k. By using the relation U−1 e1 = u′1,1 e1, the random

variable b can be written as:

b = e�1 U−1 U−� e1 =‖ e�1 U−1 ‖2=‖ u′1,m ‖2 . (16)

Now, notice that ‖ u′1,m ‖2=‖ u′1,m−1 ‖2 +u′21,m. From (15),

one has:

b =‖ u′m−1 ‖2
(

1 +
αm−1

u2
m,m

)
=

1
u2

1,1

m∏
k=2

(
1 +

αk−1

u2
k,k

)
,

where αk are all independent, are independent of u2
k,k and

are χ2
1-distributed. Since

(
1 + αk−1

u2
k,k

)−1

∼ β1

(
2K−m+k

2 , 1
2

)
and

m∏
k=2

1
β1

(
2K−m+k

2 , 1
2

) ∼ 1
β1

(
2K−m+2

2 , m−1
2

) ,

where the β1’s are (first kind) Beta distributed random vari-

ables. This leads to the distribution of b and consequently to

the PDF (13).

Moreover, Pfa =
∫ +∞

λ

p(z) dz which concludes the proof.

4. SIMULATIONS

This section presents some simulations with vector data of

order m = 20. To illustrate previous results, we first plot on

figure 1 the PFA versus the P-AMF detection threshold. These

plots show the perfect agreement between the theory (circles)

and the Monte-Carlo trials (solid lines) for different values

of K. Figure 2 shows the threshold decrease brought by the

P-AMF compared to the AMF whose theoretical distribution

can be found in [1]. The threshold is closer to the optimal

OGD’s one for a given PFA. This explains the result obtained

in figure 3 where it can be observed an improvement of about

6dB in the detection performance between AMF and P-AMF.

5. CONCLUSION

In this paper, we introduce a new adaptive detection test

which takes into account the persymmetric structure of the

clutter covariance matrix. This one is estimated by a Max-

imum Likelihood procedure. The corresponding modified

Adaptive Matched Filter (AMF) is called the Persymmetric

AMF. We derived the analytical distribution of the P-AMF
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Fig. 1. PFA versus P-AMF detection threshold for different

values of K: theory (circle) and Monte-Carlo (solid line).

test statistic. This result allows to set the detection thresh-

old for a given PFA. Simulations validate theoretical results

and show significant improvement of the P-AMF detection

performance on the conventional AMF.
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