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ABSTRACT

We propose a two-stage detector consisting of a Subspace Detector
followed by the Whitened Adaptive Beamformer Orthogonal Rejec-
tion Test. The performance analysis shows that it possesses the Con-
stant False Alarm Rate property with respect to the unknown co-
variance matrix of the noise and that it guarantees a wider range of
directivity values with respect to previously proposed two-stage de-
tectors. The probability of false alarm and the probability of detec-
tion (for both matched and mismatched signals) have been evaluated
by means of numerical integration techniques.

Index Terms: radar detection, signal detection.

1. INTRODUCTION

In the last decades several papers have addressed adaptive radar de-
tection of targets. Most of these papers follow the lead of the semi-
nal paper by Kelly [1], where the Generalized Likelihood Ratio Test
(GLRT) is used to conceive an adaptive decision scheme capable of
detecting coherent pulse trains in presence of Gaussian disturbance
with unknown covariance matrix. Training data, namely data with
the same spectral properties of the noise in the cell under test, but
supposed free of signals components, are used to estimate the un-
known covariance matrix of the noise.

A significant amount of work has also been done in order to cope
with mismatched signals. To this end, it is important to observe that
a mismatched signal may arise due to several reasons as [2, 3]: 1)
coherent scattering from a direction different to that in which the
radar system is steered (sidelobe target); 2) imperfect modeling of
the mainlobe target by the nominal steering vector, where the mis-
match may be due to multipath propagation, array calibration un-
certainties, beampointing errors, etc. Thus, it might be important to
trade detection performance of mainlobe targets for rejection capa-
bilities of sidelobe ones.

A detector with improved rejection capabilities is the Adaptive
Beamformer Orthogonal Rejection Test (ABORT) [2]. The idea of
ABORT is to modify the null hypothesis, which usually states that
the vector under test contains noise only, so that it possibly contains
a vector which, in some way, is orthogonal to the assumed target’s
signature. Doing so, if a signal with actual steering vector different
from the nominal one is present, the detector will be less inclined to
declare a detection. As customary, it is assumed that a set of train-
ing data is available at the receiver. The directivity of such detector
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is in between that of Kelly’s detector, which, in turn, is more di-
rective than the Adaptive Matched Filter (AMF) [4], and the one of
the Adaptive Coherence Estimator (ACE) [5, 6]. However, in the
original ABORT formulation, the fictitious signal is orthogonal to
the nominal one in the quasi-whitened space, i.e., after whitening by
the sample covariance matrix of the training samples. In [7], such
an assumption was modified to address adaptive detection of dis-
tributed targets embedded in homogeneous disturbance, by resorting
to the GLRT with the useful and the fictitious signals orthogonal
in the whitened space, i.e., after whitening with the true covariance
matrix. This modification leads to a detector, referred to in the fol-
lowing as Whitened ABORT (W-ABORT), with enhanced rejection
capabilities of sidelobe signals; in fact, it may become even more
selective than the ACE. On the other hand, increased robustness can
be achieved by resorting to the tools of subspace detection, namely
assuming that the target belongs to a known subspace of the observ-
ables.

Unfortunately, though, it seems difficult to find a decision scheme
capable of providing at the same time good capabilities to reject side-
lobe targets and high power in case of slightly mismatched mainlobe
targets. In order to cope with this problem, the so-called two-stage
detectors have been proposed; such schemes are formed by cascad-
ing two detectors (usually with opposite behaviors): the overall one
declares the presence of a target in the data under test only when
data under test survive both detection thresholdings. A rather fa-
mous two-stage detector is the Adaptive Sidelobe Blanker (ASB).
The ASB has been proposed as a means to mitigate the high number
of false alarms of the AMF in the presence of undernulled interfer-
ence [8]. It can be seen as the cascade of the AMF and the ACE.
Remarkably, it can adjust directivity by proper selection of the two
thresholds in order to trade good rejection capabilities of sidelobe
targets for acceptable detection loss of matched signals [8]. A fur-
ther two-stage detector, consisting of the cascade of the AMF and
Kelly’s detector, has been proposed as a computationally efficient
implementation of the latter [9]. More recently, the Subspace-based
ASB (S-ASB) has been proposed [10]: it is obtained cascading a
subspace GLRT-based detector (referred to in the following as sub-
space detector (SD)) and the ACE. The performance assessment has
shown that proper thresholds setting can increase the robustness.

Herein, based upon the experience of [10], we propose a two-
stage detector aimed at increasing also the selectivity of the S-ASB,
i.e., its capability to reject mismatched signals. This is accomplished
by cascading the SD and the W-ABORT. The performance assess-
ment seems to confirm that its directivity varies in a wider range
than its competitors, when we constrain the maximum loss with re-
spect to Kelly’s detector for matched signals, given the Probability
of False Alarm (Pfa) and the Probability of Detection (Pd).
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2. PROBLEM FORMULATION

Assume that an array formed by Na antennas senses the cell un-
der test and that each antenna collects Nt samples. Denote by z ∈
C

N×1 the N -dimensional column vector, with N = NaNt, con-
taining returns from the cell under test. We want to test whether or
not z contains useful target echoes. As customary, we assume that
a set of K training data, zk ∈ C

N×1, k = 1, . . . , K, K ≥ N , is
available. The detection problem can be re-cast as�

H0 : z = n, zk = nk, k = 1, . . . , K,
H1 : z = αp + n, zk = nk, k = 1, . . . , K,

where
• n and the nk ∈ C

N×1, k = 1, . . . , K, are independent and
identically distributed complex normal random vectors with
zero-mean and unknown covariance matrixR, i.e., n, nk ∼

CNN (0, R), k = 1, . . . , K, with R ∈ C
N×N a positive

definite covariance matrix;
• p ∈ C

N×1 is the direction of the (possible) mainlobe tar-
get echo, possibly different from that of the nominal steering
vector v ∈ C

N×1;
• α ∈ C is an unknown factor which accounts for both target
and channel effects.

In the following we propose and assess a two-stage detector ob-
tained by cascading the SD [11], whose statistic is given by

tSD =
z†S−1H(H†S−1H)−1H†S−1z

1 + z†S−1z
, (1)

and the W-ABORT, whose statistic is given by [7]

tWA =
1� |z†S−1v|2

(1 + z†S−1z)(v†S−1v)
− 1

�2

(1 + z†S−1z)

, (2)

where
• † denotes conjugate transpose;
• S ∈ C

N×N is K times the sample covariance matrix of the
secondary data, i.e., S = ZZ† with Z = [z1 · · · zK ] ∈
C

N×K ;
• H ∈ C

N×r is a full-column-rank matrix (and, hence, r > 1
is the rank of H ). Obviously, the choice of H will impact
the performance of the overall detector; in order to guarantee
reliable detection of mismatched mainlobe targets, it seems
reasonable to set H = [v v1] namely to consider a signal
subspace spanned by the nominal steering vector and an ad-
ditional one slightly mismatched with respect to v. A deeper
discussion on this point can be found in [10].

Notice that

tK =
|z†S−1v|2

(1 + z†S−1z)(v†S−1v)

is the well-known decision statistic of Kelly’s detector [1].
Summarizing, the operation of the newly-proposed detector, re-

ferred to in the following as WAS-ASB, can be pictorially described
as follows

tSD
>
< η

> η−→ tWA
>
< ξ

> ξ−→ H1

↓ < η ↓ < ξ

H0 H0

,

where η and ξ form the thresholds pair to be set in order to guarantee
the overall desired Pfa.

3. PERFORMANCE ASSESSMENT

In this section we derive analytical expressions for Pd and Pfa of the
WAS-ASB; to this end, we replace tSD with the equivalent decision
statistic t̃SD = 1/(1− tSD). Based upon results contained in [10, 12],
it is possible to show that t̃SD and tWA admit the following stochastic
representations

t̃SD = (t̃K + 1)(1 + c), tWA =
(t̃K + 1)

(1 + b)(1 + c)
,

where t̃K = tK/(1 − tK). Moreover, under the H0 hypothesis, it is
possible to show that [12]

• t̃K, given b and c, is ruled by the central complex F-distribution
with 1,K −N + 1 degrees of freedom (dof’s);

• b is a central complex F-distributed random variable (rv) with
N − r,K −N + r + 1 dof’s, i.e., b ∼ CFN−r,K−N+r+1;

• c ∼ CFr−1,K−N+2 and it is independent of b.
Now, the Pfa of the two-stage detector can be expressed as

Pfa = P [tSD > η, tWA > ξ; H0] = P
�
t̃SD > η̃, tWA > ξ; H0

�

= 1−
� +∞

0

� +∞

0

P0

�
max

�
η̃

1 + γ
− 1,

ξ(1 + β)(1 + γ)− 1)) pb(β)pc(γ)dβdγ,

where η̃ = 1/(1− η), pb(·) is the probability density function (pdf)
of the rv b, pc(·) is the pdf of the rv c, and P0(·) is the cumulative
distribution function (CDF) of the rv t̃K, given b and c (and under
H0), i.e., the CDF of a rv ruled by the CF1,K−N+1 distribution.
It is now apparent that the WAS-ASB possesses the Constant False
Alarm Rate (CFAR) property with respect to R; in fact, the above
expression of Pfa can be computed without knowledge of the noise
covariance matrixR.

Under the H1 hypothesis, we assume a misalignment between
the actual steering vector p and the nominal one v, i.e., p �= v. In
this case, the rv’s b and c depend on the mismatch angle. To be quan-
titative, let x = UR−1/2z where U ∈ C

N×N is a unitary matrix
which rotates H0, a slice of unitary matrix obtained by means of
QR factorization of the matrixR−1/2H , into the first r elementary
vectors1, i.e.,

UH0 =

�
Ir

0

�
;

in particular,
UR

−1/2
v =

�
v†R−1ve1,

with e1 the N -dimensional column vector whose first entry is equal
to one and the remaining are zero. It turns out that the random vector
x is distributed as [13]

x ∼ CNN

	

α

�
p†R−1p

�
 ejφ cos θ

hB0
sin θ

hB1
sin θ

�
� , IN

�
� ,

where hB0
∈ C

(r−1)×1 and hB1
∈ C

(N−r)×1 are such that2

||hB0
||2 + ||hB1

||2 = 1

and

ejφ cos θ =
v†R−1p�

p†R−1p
√

v†R−1v
. (3)

1
Im denotes them-dimensional identity matrix.
2|| · || denotes the Euclidean norm of a vector.
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Moreover, since b and c depend upon θ we will denote these rv’s
by bθ and cθ . Due to the useful signal components, the distributions
of t̃K, bθ , and cθ change; more precisely

• t̃K, given bθ and cθ , is ruled by the noncentral complex F-
distribution with 1, K −N + 1 dof’s and non-centrality pa-
rameter

δ2
θ =

SNR cos2 θ

(1 + bθ)(1 + cθ)
,

where SNR = |α|2p†M−1p is the total available signal-to-
noise ratio;

• bθ is ruled by the noncentral complex F-distribution withN−
r, K −N + r + 1 dof’s and non-centrality parameter

δ2
bθ

= SNR sin2 θ ||hB1
||2,

i.e., bθ ∼ CFN−r,K−N+r+1(δbθ
);

• given bθ , cθ ∼ CFr−1,K−N+2(δcθ
), with

δ2
cθ

=
SNR sin2 θ ||hB0

||2
1 + bθ

.

Thus, proceeding along the same line as for the derivation of the
Pfa, it is easy to see that the Pd is given by

Pd = 1−
� +∞

0

� +∞

0

P1

�
max

�
η̃

1 + γ
− 1,

ξ(1 + β)(1 + γ)− 1)) pcθ|bθ
(γ|bθ = β) pbθ

(β) dβ dγ,

where P1(·) is the CDF of the rv t̃K, given bθ and cθ (and under
H1), i.e., the CDF of a rv ruled by the CF1,K−N+1(δθ) distribution,
pbθ

(·) is the pdf of a rv ruled by the CFN−r,K−N+r+1(δbθ
), and

pcθ|bθ
(·|·) is the pdf of a rv ruled by the CFr−1,K−N+2(δcθ

).
In the case of a perfect match between v and p, i.e., θ = 0,

δbθ
and δcθ

are equal to zero, thus rv’s cθ and bθ obey to the central
complex F-distributions withN − r,K−N + r +1 and r−1, K−
N + 2 dof’s, respectively. On the other hand, t̃K is still subject to
the noncentral complex F-distribution with 1, K −N + 1 dof’s and
non-centrality parameter given by

δ2
0 =

SNR
(1 + b0)(1 + c0)

.

4. ILLUSTRATIVE EXAMPLES AND DISCUSSION

In this section we present some numerical examples to show the ef-
fectiveness of the WAS-ASB, also in comparison to the ASB and
the S-ASB. All curves have been obtained by means of numerical
integration techniques. In all examples the noise is modeled as an
exponentially-correlated complex normal vector with one-lag corre-
lation coefficient ρ, namely the (i, j)-th element of the covariance
matrix R is given by ρ|i−j|, i, j = 1, . . . , N , with ρ = 0.95. The
probability of false alarm is set to 10−4. Moreover, we set Nt = 1,
Na = N , r = 2, and choose v = s(0) and v1 = s(π/360) with

s(φ) =
1√
N

�
1 ej 2πd

λ
sin φ · · · ej(N−1) 2πd

λ
sin φ

�T

,

where d is the inter-element spacing, λ is the radar operating wave-
length, and T denotes transpose. Moreover, we will denote by φT the
azimuthal angle of the impinging useful target echo, i.e., p = s(φT ).
First, note that the Pfa of two-stage detectors depends on the two
thresholds; as a consequence, there exist infinite thresholds pairs that

guarantee the same value of Pfa. Fig. 1 shows the contour plots for
theWAS-ASB corresponding to different values of Pfa, as functions
of the thresholds pairs,N = 16,K = 32.

In Figs. 2-3 we plot Pd vs SNR for the S-ASB and the WAS-
ASB, respectively, as they compare to Kelly’s detector [1], for the
case of a matched target,N = 16,K = 32; in these figures we show
two curves (in addition to the curve of Kelly’s detector) for each of
them: such curves correspond to the limiting behaviors of the two-
stage detectors for thresholds settings which guarantee Pfa = 10−4.
Fig. 2 shows that the maximum loss of the S-ASB with respect to
Kelly’s detector is less than (about) 1.2 dB (at Pd = 0.9); such a
maximum loss increases to (about) 2 dB in Fig. 3 for the WAS-ASB.

In Figs. 4-6 we plot Pd vs φT (measured in degrees) for the
ASB, the S-ASB, and the WAS-ASB, respectively, N = 16, K =
32; for all of the detectors plotted curves refer to thresholds pairs
such that the loss for matched signals3 with respect to Kelly’s detec-
tor is less than (about) 1 dB at Pd = 0.9, Pfa = 10−4. Observe
from Figs. 4 and 5 that the S-ASB can ensure better robustness with
respect to the ASB, due to the first stage (the SD), which is less sen-
sitive than the AMF to mismatched signals. However, S-ASB and
ASB exhibit the same capability to reject sidelobe targets, according
to the fact that the second stage (the ACE) is the same. As it can
be seen from Figs. 5 and 6, instead, the WAS-ASB can guarantee
the same robustness of the S-ASB, but better rejection capabilities
than the latter (and, consequently, better rejection capabilities than
the ASB), due to the fact that the second stage has been replaced by
the W-ABORT.
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Fig. 1. Contours of constant Pfa for WAS-ASB with N = 16,
K = 32, and r = 2.
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Fig. 2. Pd vs SNR for the S-ASB (solid lines) and the Kelly’s detector
(dash-dotted line) with N = 16,K = 32, and r = 2.
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Fig. 3. Pd vs SNR for the WAS-ASB (solid lines) and the Kelly’s detector
(dash-dotted line) with N = 16,K = 32, and r = 2.
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Fig. 4. Pd vs target azimuthal angle for the ASB with N = 16, K = 32,
and SNR = 19 dB. Different curves refer to different thresholds pairs.
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Fig. 5. Pd vs target azimuthal angle for the S-ASB withN = 16,K = 32,
r = 2, and SNR = 19 dB. Different curves refer to different thresholds
pairs.
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Fig. 6. Pd vs target azimuthal angle for the WAS-ASB with N = 16,
K = 32, r = 2, and SNR = 19 dB. Different curves refer to different
thresholds pairs.
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