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ABSTRACT

The estimation error performance of Gaussian belief propagation
based distributed estimation in a large sensor network employing
random sleep strategies is explicitly evaluated for a simple model
using density evolution analysis. Both regular sleep strategies, in
which the number of nodes awake at any time instant is fixed, as
well as irregular sleep strategies, in which the number of awake
nodes may vary, are analyzed. The calculated estimation error is
used to study the tradeoff between estimation accuracy and energy
consumption, as well as to dictate the optimal parameters for the
random sleep strategy.

Index Terms— distributed estimation, sensor networks, belief
propagation, expectation propagation, density evolution, energy ef-
ficiency

1. INTRODUCTION & SENSOR NETWORK
DISTRIBUTED ESTIMATION MODEL

Consider a network S of N sensor nodes S := {si|i ∈ {1, . . . , N}},
each wishing to estimate its own parameter ζi. The sensor network
employs a pseudo-random sleep strategy for energy efficiency, in
which at discrete time instant k, only a subset of nodes Ak ⊂ S
are awake. Those sensors that are awake observe their parameters
indirectly through noise that is correlated across the different sensor
nodes, so that the observations are

rk,i := ζi + nk,i, i ∈ Ak

The goal of this distributed estimation problem is to coordinate the
estimation of ζi from the observations across the sensor network in
a distributed manner across the sensor network. Note that this goal
differentiates the results presented here from consensus propagation
[1] style results for sensor networks, in which all nodes aim at in-
ferring/estimating the same hypothesis/parameters, as well as many
classic decentralized detection/estimation results in which the fusion
and inference is done at a fusion center rather than in the network it-
self.

Although the results we provide may be generalized to a far
broader context, for the sake of simplicity of exposition, suppose
that a priori the parameters ζi are independently and identically dis-
tributed (i.i.d.) according to Gaussian distributions with mean 0 and
variance 1. We consider a physical regime in which the noise may be
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modeled as uncorrelated across different time instants, but correlated
across different awake sensors, so that

E[nk,inm,j ] :=

��
�

σ2 k = m, i = j
γσ2 k = m, i �= j
0 k �= m

As discussed in [2], we can associate with the distributed estimation
algorithm a factor graph [3], whose left nodes correspond to differ-
ent sensors in the sensor network, and whose right nodes correspond
to different time instants in the cyclic pseudo-random sleep strat-
egy. This abstraction allows expectation propagation to applied to
perform distributed estimation in the sensor network as described in
[2]. With the model setup we consider in this case, EP simplifies to
Gaussian belief propagation (BP).

The coordination of the different estimation problems at differ-
ent sensor nodes via Gaussian BP is performed as follows [2]. At a
given time instant k, each node that is awake (si, i ∈ Ak) broad-
casts its observations and its saved estimated mean and variance of
their parameter ζi to the other awake nodes. Each awake node then
computes (via a local Bayes rule) a new estimated a posteriori mean
and variance of their parameter, saves the result, and goes to sleep.
This corresponds to belief propagation in the associated factor graph
in [2], where the messages passed in the factor graph correspond
to marginal Gaussian densities, and thus are characterized by their
mean and variance.

This paper focuses on the case where the sets Ak are chosen
randomly, uniformly among the subsets of size ck of S. The random
selection is performed using a pseudo-random number generator so
that they repeat after M time instants; thus Ak = Ak|M . We thus
call M consecutive time instants an entire sleep cycle. We consider
both the regular case when the same number of nodes ck = c are
awake at each time instant and each node si is awake the same num-
ber of time instants di = d within an entire sleep cycle, as well as
the case where ck, di change for different i, k. In the latter case, the
fraction of edges in the factor graph connected to variable nodes of
degree di = j is denoted by λj , and the fraction of edges in the
factor graph connected to factor nodes of degree ck = m is denoted
by ρm, and these fractions are collected into the degree distribution
polynomials defined as

λ(z) :=
�

j

λj+1z
j , ρ(z) :=

�
m

ρm+1z
m

A key benefit of this random sleep strategy setup is that, with
probability → 1 in the large network limit (N → ∞) while the de-
gree distributions remain fixed, for any finite number of iterations �,
BP provides the exact a posteriori density for ζi given those observa-
tions in the factor graph no more than 2� edges away from ζi. This
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is because the set of all nodes N�(ζi) no more than 2� edges away
from the variable node ζi, called the computation neighborhood ζi

of depth �, is a tree with probability → 1 as the size of the network
N → ∞ [4]. This fact allows density evolution [5] to be applied,
in principle, to quantify the performance of BP based distributed es-
timation after � iterations in the large network limit. We presently
apply density evolution to quantify the performance of the BP based
estimators, within the especially simple context of our sensor net-
work distributed estimation problem, which allows for closed form
exact calculations of the message densities involved. The goal, and
ultimate novelty relative to many similar expositions [6, 7], of the
paper is then the optimization of the random sleep strategy through
the degree distribution polynomials, in order to have BP get the most
accurate estimates it can while satisfying a limit on its energy con-
sumption.

2. BP ESTIMATE ACCURACY CALCULUS VIA DENSITY
EVOLUTION

We begin by using density evolution to calculate the estimate accu-
racy within this simple Gaussian BP case.

2.1. Regular Random Sleep Strategies

Let us first consider the case where the number of nodes that are
awake at each discrete time instant in the sleep cycle is constant, and
each node is awake the same number of times per sleep cycle, so that
di = d, ∀i ∈ {1, . . . , N} and ck = c, ∀k ∈ {0, . . . , M − 1}. Be-
cause all of the random variables involved are Gaussian, and there is
a great deal of symmetry in the problem setup, we can calculate the
estimated a posteriori distribution provided by Gaussian BP after �
iterations exactly. Furthermore, if we treat the mean of the estimated
marginal distribution as the estimate of ζi, then the mean squared
error (MSE) of this estimate will be the variance component of the
estimated marginal distribution provided by BP. Additionally, due to
the fact that the minimum mean squared error estimator is the con-
ditional expectation, the estimated mean provided by BP will be the
optimal (MMSE) estimator among any estimators which have ac-
cess only to those observations in the computation tree rooted at ζi

of depth �. Also, due to the fact that the factor graph is regular and
the distributions are Gaussian, the variance portion of the messages
passed by BP do not depend on the observations (as can be seen
from the formula for conditioning in jointly Gaussian distributions).
Thus, all of the variances in messages passed at the �th iteration will
be the same deterministic number. Since our focus it to quantify per-
formance, we presently exclusively calculate the evolution of these
variance portions (and not the means) of the messages passed over
iterations.

First we calculate the variance portion p of the outgoing mes-
sage to variable node ζi from a factor node, given the variances in
the incoming messages are q. Relabeling the observations at the
given factor node as r[1], . . . , r[c], then the joint distribution of ζi

and r[1], . . . , r[c] given by using the incoming messages as prior
distributions will be a Gaussian distribution with covariance matrix

�
������

1 1 0 · · · 0
1 (1 + σ2) γσ2 · · · γσ2

0 γσ2 (q + σ2) γσ2 · · ·
...

. . .
. . .

. . .
...

0 γσ2 · · · γσ2 (q + σ2)

�
������

Thus, the conditional distribution of ζi given all of the observations

in its computation tree of size l will be a Gaussian distribution with
variance

p := 1 −

�
����

(1 + σ2) γσ2 · · · γσ2

γσ2 (q + σ2) γσ2 · · ·
. . .

. . .
. . .

...

γσ2 · · · γσ2 (q + σ2)

�
����

−1

1,1

(1)

where (·)−1
1,1 denoted the element in the first row and first column of

the inverse of the matrix ·. This variance can be rewritten with the
help of the matrix inversion lemma, which states that if a matrix

A = B−1 + CD−1CT

with A,B, and D positive definite, then

A−1 = B − BC
�
D + CT BC

�−1

CT B

Taking C = 1 the c dimensional column vector with all elements
1, D−1 = γσ2, and B−1 = (1 − q)e0e

T
0 + (q + (1 − γ)σ2)Ic,

and introducing the intermediate variables δ = (1 + (1 − γ)σ2)−1,
ε := (γσ2)−1, α = (1 − γ)σ2 we can thus rewrite (1) as

p = 1 − δ + δ2

	
ε + δ +

c − 1

q + α


−1

(2)

At a variable node d − 1 such messages are combined to produce a
new right-going message variance q

q =
(p−1 − 1)−1

d − 1
=

p

(d − 1)(1 − p)
(3)

Furthermore, the variance of the estimated a posteriori density is

mse =

	
1 +

d

(p−1 − 1)−1


−1

=
p

1 + (d − 1)(1 − p)
(4)

This variance also gives the mean squared error of the conditional
mean (specified above), which is the minimum mean squared er-
ror estimator for ζi given the observations in the computation tree.
Solving (4) for p, and then substituting into (3) we have

q =
dmse

d − 1 + (d − 1)(d − 2)mse
(5)

We can then put all of these equations together to get a recursion for
the mean squared error msek after k entire sleep cycles by substi-
tuting (5) evaluated at msek−1 into (2) and substituting the resulting
expression into (4) to get msek. Of course, the prior distribution on
ζi gives an initial mean squared error mse0 = 1.

2.2. Irregular Random Sleep Strategies

This was all for a given d and c, but for the irregular factor graph
case the node degrees will in general be random variables d, c. The
degree distributions λ(z) and ρ(z) can in this case be interpreted as
moment generating functions for d − 1 and c − 1.

To calculate the performance of BP based distributed estimation
in this case, note that when the graph is irregular (1) becomes

p := 1 −

�
����

(1 + σ2) γσ2 · · · γσ2

γσ2 (q1 + σ2) γσ2 · · ·
. . .

. . .
. . .

...

γσ2 · · · γσ2 (qc−1 + σ2)

�
����

−1

1,1
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where q1 through qc−1 are i.i.d. random variables, and c − 1 is an
independent random variable whose probability mass function has
moment generating function given by the factor node degree distri-
bution ρ(z). Thus (2) becomes

p = 1 − δ + δ2

�
ε + δ +

c−1�
i=1

1

qi + α

�−1

(6)

Furthermore, (3) becomes

q =

�
d−1�
i=1

(p−1
i − 1)

�−1

(7)

where pi are d i.i.d. random variables whose distribution matches
the distribution for p determined by (6), and d − 1 is an indepen-
dently distributed random variable with moment generating function
λ(z). To get this into a form amenable to density evolution, change
variables to θ = q−1 and φi = p−1 − 1, then (7) becomes a familiar
sum of a random number of random variables, ie

θ =

d−1�
i=1

φi

The characteristic function Q(Ω) of this sum can be found by com-
posing the moment generating function of the variable d− 1 (which
is just the left node degree distribution λ(z)) with the characteristic
function P (Ω) for φi = p−1

i − 1, i.e. Q(Ω) = λ(P (Ω)).
The factor node update equation (6) can be transformed by in-

troducing the intermediate variable

w :=

c−1�
i=1

θi

1 + αθi
(8)

to rewrite (6) as p = 1 − δ + δ2(ε + δ + w)−1, and thus the new
distribution for the φis is the distribution of the random variable

φ = p−1 − 1 =
(ε + w)

1 + α(ε + w)

Define the operator Fα which takes a characteristic function Q(Ω)
for a non-negative random variable θ and returns the characteristic
function

FαQ(Ω) := E

�
exp

�
ıΩ

θ

1 + αθ

��
Then, the random variable w defined in (8) has the characteristic
function

W (Ω) := ρ(FαQ(Ω))

Next define the operator Gα,ε which takes the characteristic function
W (Ω) for a random variable w and returns the characteristic func-
tion

Gα,εW (Ω) := E

�
exp

�
ıΩ

w + ε

1 + α(ε + w)

��
Then the density evolution between Pk(Ω) and Pk+1(Ω) can be
found as

Pk+1(Ω) = Gα,ερ(Fαλ(Pk(Ω)))

or equivalently

Qk+1(Ω) = λ(Gα,ερ(FαQk(Ω)))

Finally, letting x be the random variable whose characteristic func-
tion is Pk(Ω)λ(Pk(Ω)), the distribution of the MSE of the estimate

provided at a randomly selected sensor node after k iterations has a
characteristic function Mk(Ω) defined by

Mk(Ω) := E

�
exp

�
ı
Ω

x

��

The expectation of this MSE (over the random sleep strategies) then
gives the average accuracy of the estimate provided by Gaussian BP
based distributed estimation.

3. OPTIMIZED ENERGY VS. ACCURACY TRADEOFF

The estimation error decreases with increasing numbers of iterations,
as well as with increasing (average) degrees d or c, since all of these
imply more observations are used in forming the (exact) marginal a
posteriori density provided by Gaussian BP. However, this increase
in estimation accuracy comes at the cost of more messages being
passed, and thus greater energy expended. Thus, it is of interest to
study to energy vs. accuracy tradeoffs within this simplified sce-
nario.

3.1. Regular Random Sleep Strategies

Intuitively, the energy consumed by a node for estimation is pro-
portional to the number of discrete time instants that it is awake
and sends a message, and the amount of energy consumed per time
instant is proportional to the number of nodes that are awake per
time instant. This is because of limited communications resources
amongst the nodes. In particular, as the number of nodes grows for a
fixed time interval corresponding to a single discrete time instant in
the sleep cycle, the nodes will have to expend more energy to com-
municate with each other. Furthermore, the number of discrete time
instants a node must be awake and send a message for the estimation
is the number of time instants it is awake per sleep cycle times the
number of sleep cycles used for the estimation. The simplest model
capturing these proportionalities takes the energy to be

E(�, d, c) = �cd

It is then of interest both to study the tradeoff between energy effi-
ciency and estimation accuracy as dictated by the optimization prob-
lem

mse∗(E∗) := min
�,c,d|E(�,d,c)≤E∗ mse�(d, c)

the optimal regular sleep strategies may also be determined as a re-
sult of this optimization problem according to

�∗(E∗), c∗(E∗), d∗(E∗) := arg min
�,c,d|E(�,d,c)≤E∗ mse�(d, c)

Figure 1 shows the optimal sleep strategies and energy accuracy
tradeoff for particular values of the parameters γ and σ2.

3.2. Irregular Random Sleep Strategies

Just as in the regular case, the energy consumed by a node for estima-
tion in a sensor network employing irregular random sleep strategies
is proportional to the number of time instants it is awake times the
energy consumed per time instant. The energy consumed per time
instant, is in turn, determined by the number of nodes awake per time
instant. A simple energy metric is then

E(�, λ, ρ) =
��	 1

0
λ(z)dz


�	 1

0
ρ(z)dz
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Fig. 1. Optimized sleep strategies and energy vs. accuracy tradeoff for γ = .9 and σ2 = .1 and γ = .5 and σ2 = .1.

mse∗(E∗) := min
λ,ρ,�|E(�,λ,ρ)≤E∗ mse�(λ, ρ)

(�∗(E∗), λ∗(E∗), ρ∗(E∗)) := arg min
λ,ρ,�|E(�,λ,ρ)≤E∗ mse�(λ, ρ)

Optimization can be carried out by adjusting the coefficients of
λ(z) or ρ(z) subject to the constraints that

�
j ≥ 1

λj+1 = 1 and

� 1

0

λ(z) dz =
�
j≥1

λj+1

j + 1
= constant

and similarly for ρ(z), to ensure that λ(z) or ρ(z) captures a valid
probability mass function, and that the energy measure is fixed dur-
ing the adaptation. A random search direction η is produced for
the coefficients of λ(z) or ρ(z), and projected along the constraints�

j ηj = 0 and
�

j ηj/j = 0, with the better of λ ± η (or ρ ± η)
for the mean-square error retained for the next search step.

As an example, consider σ2 = 0.1 and γ = 0.5 from the fixed
degree case, and suppose that λ(z) and ρ(z) are both constrained to
have degree 8 (or less). Using as initial values λ(z) = z3, ρ(z) = z
and � = 2 found in the fixed degree case, optimized polynomials are
found as

λ(z) = 0.2817z2 + 0.1905z3 + 0.1734z4 + 0.2514z5

+ 0.0264z6 + 0.0010z7 + 0.0756z8

ρ(z) = 0.996z + 0.0001z6 + 0.0002z7 + 0.001z8

giving a mean-square error of −16 dB after 2 iterations of expecta-
tion propagation. This gives a slight, although not earth-shattering,
improvement in estimation accuracy for the same energy expendi-
ture, which is 20. We observe that the coefficient λ2 has vanished,
indicating the absence of degree 2 nodes from the optimization pro-
cedure, and that the optimization procedure has favored wake cycles
of degree 7 or higher.

4. CONCLUSION

We have quantified the performance of BP based distributed esti-
mation in large sensor networks, and have showed how to optimize

random sleep strategies to trade estimate accuracy for energy effi-
ciency. Future work will continue to study numerically energy ac-
curacy tradeoffs using the established density evolution for irregu-
lar sleep strategies, searching for not just locally, but globally opti-
mal degree distributions, quantifying their improvement over regular
sleep strategies of similar average energy consumption.
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