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Abstract—We consider decentralized detection for resource-
constrained wireless sensor networks where local sensor decisions
need to go through a multi-hop relay network before reaching
the fusion center. Our objective is to collectively design sensor
decision rules and relay rules for optimum detection perfor-
mance. Under the Bayesian criterion, we establish the necessary
conditions for an optimal system and derive the form of the
optimal fusion rule at the fusion center. Under some conditional
independence assumptions, we derive the forms of the optimal
local decision rules and the optimal relay rules and show that
the optimal set of decision rules for the entire system can be
speci ed by a set of parameters. We demonstrate the advantages
of our proposed systematic approach against more conventional
design approaches through a numerical example.

Index Terms—Distributed Detection, Cooperative Relay, Wire-
less Sensor Network

I. INTRODUCTION

Analysis and optimization of the distributed detection sys-
tem including the design of local decision rules and the fusion
center decision rule (fusion rule) under different criteria and
constraints are the essential problems of distributed detection
systems [1]–[3]. For a binary hypotheses detection problem,
the optimal fusion rule can be obtained by applying the
likelihood-ratio test (LRT) at the fusion center [4], [5]. Under
the assumptions that local observations are conditionally in-
dependent given the hypothesis and the fusion center receives
the local sensor outputs without any loss, the optimality of
the LRT for local sensor decision rules under the Bayesian
criterion and the Neyman-Pearson (NP) criterion has been
proved in [6] and [7]. For the case where the channels between
local sensors and the fusion center are non-ideal, the optimality
of local LRTs was proved in [8], [9] and [10] for independent
channels and a general multiple access channel, respectively.

In many wireless sensor network (WSN) applications where
sensors are operating on a small, irreplaceable power supply,
the transmission range of sensors is often limited. Therefore,
instead of direct connections, local sensor decisions reach the
fusion center through through a relay network consisting of
one or multiple hops of relay nodes. The overall detection
performance at the fusion center depends not only on the
local sensor rules but also on the relay rules. For the case
where the relay rules are xed, the link between local sensors
and the fusion center can be modeled equivalently as a xed
channel and the previous approaches proposed in [2] and [10]
can be applied to obtain the optimal detection performance.
When the relay rules are adjustable, i.e., we can design the

“channel” between the local sensors and the fusion center
under certain constraints, the xed channel assumption is no
longer valid and such approaches cannot be applied directly.
In [11], the decision fusion problem is considered for a
binary hypotheses distributed detection system involving a
relay network consisting of several parallel independent multi-
hop relay paths. Several decision fusion rules were examined
with each relay node forwarding the sign of its received signal
to the next node.

In this paper, we consider the multiple hypotheses detection
problem for distributed detection systems where the local
sensor decisions are sent to the fusion center via one or
several layers of relay nodes. Unlike the model in [11] where
one-to-one independent connections between relay nodes were
assumed, here, each relay node may receive signals from one
or several nodes in the previous layer of nodes and may send
signals to one or several nodes in the next layer. Our goal is
to jointly and optimally design all decision rules (local sensor
decision rules, relay rules and the fusion rule) to achieve the
minimum Bayesian risk. The overall detection performance is
obtained as a function of the decision rules and the under-
lying distributions of the hypotheses. Noticing the similarity
between the communication problem and the distributed de-
tection problem, our approach can also be employed for a
wireless communication system to improve its performance
by reducing the error probability at the destination node.

II. PROBLEM FORMULATION

As shown in Fig. 1, we consider an M -ary distributed
detection system consisting of three types of nodes: local
sensors, N layers of relay nodes and the fusion center. To
detect the phenomenon H = {H0,H1, · · · ,HM−1}, local
decisions are made at the local sensors and transmitted through
channels and sets of relay nodes to a fusion center where
the nal decision U0 is made. Unlike traditional distributed
detection systems where either a perfect lossless channel [1]
or a xed noisy channel [2], [10] between the local sensors
and the fusion center is assumed, in this paper, the connection
between the local sensors and the fusion center is changeable
by adjusting the relay rules at the relay nodes. The system
model illustrated in Fig. 1 can be described in detail below.

1) Local Sensor Layer. Upon receiving its observation Xk,
the kth sensor makes its decision based on its local deci-
sion rule γk(·) such that Uk = γk(Xk), k = 1, 2, · · · ,K.
Without loss of generality, we assume that Uk belongs to
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Fig. 1. The canonical parallel wireless distribution fusion system.

a nite-alphabet (FA) set Fk = {0, 1, · · · , Vk−1} where
Vk is the number of possible outputs at the kth local
sensor. The local sensors make their decisions based
on their own observations only without communicating
with others. Let x = [X1, X2, · · · , XK ]T and u =
[U1, U2, · · · , UK ]T ∈ F be the set of local observations
and associated decisions, where F = F1×F2×· · ·×FK

is the Cartesian product of sets F1, F2, · · · , FK . We have

P (u = [u1, u2, · · · , uK ]T |x) =

K∏
k=1

P (Uk = uk|Xk).

(1)
The local sensor decisions are sent to the fusion center
through N layers of relay nodes.

2) Fusion Center. At the fusion center, a nal decision U0

is made based on its input z and the fusion rule γ0(·)
such that

U0 = γ0(z). (2)

Without loss of generality, U0 is assumed to be drawn
from the set {0, 1, 2, · · · ,M − 1} where U0 = i means
Hi is accepted, i = 0, 1, · · · ,M − 1. Note that the
similarities between the local sensor, the relay node
layers and the fusion center layer, the local sensors can
also be considered as the 0th layer of relay nodes, and
the fusion center can be considered as the N +1th layer
of relay nodes.

3) Relay Nodes. A total of N layers of relay nodes relay
the decisions from the local sensors to the fusion center.
At the ith relay node of the jth set, upon receiving
its observation Yi,j , based on its relay rule γi,j(·),
the relay signal Ri,j = γi,j(Yi,j) is selected from a
FA set Gi,j = {0, 1, · · · , Di,j − 1} for 1 ≤ i ≤
Lj , 1 ≤ j ≤ N where Lj is the number of relay
nodes in the jth set. Let yj = [Y1,j , Y2,j , · · · , YLj ,j ]

T

and rj = [R1,j , R2,j , · · · , RLj ,j ]
T ∈ Gj , be the set of

observations and decisions for the jth relay set, where
Gj = G1,j ×G2,j ×· · ·×GLj ,j is the Cartesian product
of sets G1,j , G2,j , · · · , GLj ,j . we have

P (rj |yj) =

Lj∏
i=1

Pi,j(Ri,j = ri,j |Yi,j), (3)

where Pi,j(Ri,j |Yi,j) is determined by γi,j .
The channel statistics of the jth channel between the
j-1th layer of relay nodes and the jth relay nodes is

described by its transmission matrix pj(yj |rj−1) where
the channel input rj−1 is the relay signal from the j −
1th layer of relay nodes and the channel output yj is
the input signal to the jth layer of relay nodes, j =
1, 2, · · · , N + 1.

It can be shown that H → x → u → y1 → r1 → y2 →
r2 → · · · → rN → z→ U0 form a Markov chain.

For this M -ary hypotheses detection problem, the Bayesian
criterion is adopted where the goal is to minimize the Bayesian
cost C given by

C =
∑

0≤a,b≤M−1

ca,bP (U0 = a,Hb)

=
∑

0≤a,b≤M−1

ca,bP (U0 = a|Hb)πb, (4)

where ca,b is the cost of global decision being a when Hb

is present, πb = P (Hb) is the prior probability of hypothesis
Hb, b = 0, 1, · · · ,M − 1. For the special case where the cost
is the probability of error, we have ca,b = 0, a = b and 1
otherwise. The overall optimization problem can be formalized
as follows.

In a M -ary distributed detection system as shown in Fig. 1,
given the following:
• the prior probabilities of the hypotheses πb = P (Hb);
• the underlying distribution x given each hypothesis at

local sensors p(x|Hb), b = 0, 1, · · · ,M − 1;
• the channel statistics for the N + 1 channels pj(·|·), j =

1, 2, · · · , N + 1;
design the local sensor decision rules γk, k = 1, 2, · · · ,K,
the relay rules γi,j , j = 1, 2, · · ·N, i = 1, 2, · · · , Lj , and the
fusion rule γ0 subject to (1) and (3), respectively such that the
Bayesian cost (4) is minimized. In some practical applications,
one or several rules may be xed. In those cases, the goal is
to optimally design those rules that are variable to obtain the
best achievable performance.

III. OPTIMUM DESIGN OF THE DISTRIBUTED DETECTION
SYSTEM

For this joint optimization problem where three sets of rules
are to be determined, the optimum detection performance is
obtained when all the rules are optimized at the same time
at all nodes. In order to nd an optimum set of rules, we

rst nd the necessary conditions for an optimum solution by
solving the optimization problem for one node while keeping
all other decision rules xed, i.e., using the person-by-person
optimization (PBPO) approach. The optimum fusion rule γ0

can be obtained in a relatively straightforward manner. Given
the set of local sensor decision rules, relay rules and the
channel statistics, the Bayesian cost C is given by

C =

∫
z

∑
0≤a≤M−1

P (U0 = a|z)f0(z, U0 = a)dz, (5)

where

f0(z, U0 = a) =
∑
rN

∑
0≤b≤M−1

ca,bP (rN |Hb)pN+1(z|rN )πb

=
∑
rN

κ0(a, rN )pN+1(z|rN ) (6)
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is the Bayesian cost density function (BCDF) at the fusion
center with input z and decision U0 = a, where

κ0(a, rN ) =
∑

0≤b≤M−1

ca,bP (rN |Hb)πb

is independent of z and is a function of rN , output of the N th
relay set and the nal decision U0 = a. In order to minimize
the cost C, from (5), the γ0 here amounts to the maximum
a posteriori probability (MAP) decision, i.e., upon receiving
its observation z, the optimal fusion rule γ0 is to decide the
hypothesis with the minimum cost such that

γ0(z) = um
0 = arg min

a∈{0,1,···,M−1}
f0(z, U0 = a). (7)

Since the N + 1th channel statistics pN+1(z|rN ) is xed and
known, the form of f0(z, U0) is also xed, i.e., f0(z, U0) is
always a linear combination of pN+1(z|rN ) terms, only the
set of coef cients κ(U0, rN ) is subject to change for different
local sensor rules and relay rules.

Next, we determine the optimal local sensor rules and relay
rules. It can be shown that the optimization problem is NP-hard
in general. However, under some independence assumptions,
forms of the optimal local sensor decision rules and relay rules
can be determined. First, let us consider the case where the
observations at the local sensors X1, X2, · · · , XK are assumed
to be conditionally independent under any given hypothesis

such that p(x|H) =
K∏

i=1

p(Xk|H). Let

uk = [U1, U2, · · · , Uk−1, Uk+1, · · · , UK ]T

and
xk = [X1, X2, · · · , Xk−1, Xk+1, · · · , XK ]T .

At the kth local sensor, given all other rules are xed, the
detection performance is given by

C =

∫
Xk

∑
Uk

P (Uk|Xk)fk(Xk, Uk)dXk, (8)

with

fk(Xk, Uk) =
∑

0≤b≤M−1

κk(Hb, Uk)p(Xk|Hb), (9)

where

κk(Hb, Uk) =

∫
xk

∑
uk

∑
0≤a≤M−1

ca,b

P (uk|xk)P (U0 = a|uk, Uk)p(xk|Hb)πbdxk

=
∑
uk

∑
0≤a≤M−1

ca,bP (U0 = a|uk, Uk)

P (uk|Hb) (10)

is independent of Xk and is a function of the underlying
hypothesis Hb, the local decision Uk and all other decision
rules. Thus, the optimal fk(Xk, Uk) is always a linear combi-
nation of functions p(Xk|Hb) with suitable coef cients under
all circumstances. Thus, the optimal kth local sensor rule γk

to minimize the overall Bayesian cost C is given by

γk(Xk) = um
k = arg min

uk∈{0,1,···,Vk−1}
fk(Xk, uk). (11)

We next consider the case where [Y1,j , Y2,j , · · · , YLj ,j ], the
inputs at the jth relay set are assumed to be independent given
rj−1, output of the previous relay set, i.e.,

pj(yj |rj−1) =

Lj∏
i=1

pi,j(Yi,j |rj−1), (12)

j = 1, 2, · · · , N . By xing all rules but γi,j , we have

C =

∫
Yi,j

∑
Ri,j

P (Ri,j |Yi,j)fi,j(Yi,j , Ri,j)dYi,j (13)

with

fi,j(Yi,j , Ri,j) =
∑
rj−1

κi,j(rj−1, Ri,j)P (Yi,j |rj−1),(14)

where

κi,j(rj−1, Ri,j) =
∑

0≤a,b≤M−1

ca,b

∑
ri

j

P (U0 = a|rij , Ri,j)

P (rij |rj−1)P (rj−1|Hb) (15)

is independent of Yi,j and is a function of previous relay set
output rj−1, current relay node decision Ri,j and all decision
rules except γi,j . Thus, the optimal fi,j(Yi,j , Ri,j) is always
a linear combination of channel statistics P (Yi,j |rj−1) with
suitable coef cients under all circumstances. The optimal relay
rule γi,j is to decide the one with the minimum cost, i.e.,

γi,j(Yi,j) = rm
i,j = arg min

ri,j∈{1,2,···,Di,j}
fi,j(Yi,j , Ri,j), (16)

where rm
i,j is the relay output.

IV. A DETECTION EXAMPLE

Here, we consider a two-sensor and two-relay distributed
detection system where the goal is to detect a known signal
in additive Gaussian noise using two sensors such that

{
H0: Xk = Nk

H1: Xk = A + Nk
, (17)

for k = 1, 2, where N1 and N2 are independent and identically
distributed (i.i.d.) Gaussian random variables with zero mean
and variance σ2. Without loss of generality, we assume A = 1
and σ2 = 1. We also assume that the prior probability
π0 = P (H0) = P (H1) = π1 = 0.5. Each sensor makes
a binary decision Uk based on its observation Xk such that
Uk = γk(Xk). Uk = 1 if H1 is decided and Uk = 0 if
H0 is decided. In this experiment, U1 and U2 are sent to the
relay nodes R1,1 and R2,1 via a Gaussian interference channel
(channel 1) such that

Y1,1 = U1 + c21U2 + W1,

Y2,1 = U2 + c12U1 + W2, (18)

where c12 and c21 are real numbers, and W1 and W2 are
i.i.d. Gaussian random variables with zero mean and unit
variance. Y1,1 and Y2,1 are conditionally independent given
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the local sensor outputs [U1, U2] and the transmission matrix
P (Y1,1, Y2,1|U1, U2) is given by

P (Y1,1, Y2,1|U1, U2) = φ(Y1,1 − U1 − c21U2)

· φ(Y2,1 − U2 − c12U1), (19)

where φ(·) = 1√
2π

exp(−x2

2
) is the probability density func-

tion (pdf) for the standard Gaussian distribution. Note that
for the special case where c12 = c21 = 0, the relay channel
consists of two i.i.d. Gaussian channels. One bit quantization
is assumed at relay sensors, i.e., Ri,1 = 0, 1 depending on its
received signal, i = 1, 2. The relay signal r1 = [R1,1, R2,1]

T

is transmitted to the fusion center via channel 2 where the
nal decision U0 = 0 or 1 is made. In this example, channel

2 consists of two perfect lossless channels such that

Z1 = R1,1

Z2 = R2,1 (20)

Since both conditional independence assumptions are satis ed,
the form of optimal local sensor rules and relay rules are given
by Eqns. (11) and (16), respectively.

The performance of our approach is compared to a “ xed
relay rules” strategy where the output of each relay node is the
sign of its received signal, i.e., Ri,j = 1 when Yi,j > 0 and
0 otherwise. For both strategies, we optimize the local sensor
rules and fusion rules to achieve the best achievable detection
performance in terms of PE . Here, the prior probabilities of
both hypotheses are assumed to be equal such that π0 = π1 =
0.5. We vary the channel interference c12 = c21 = ρ and
evaluate the detection performance of both strategies, 0 ≤ ρ ≤
1. PE as a function of ρ for both strategies is shown in Fig.
2. The proposed approach clearly outperforms the “ xed relay
rules” approach for all ρ > 0. The performance gain is more
signi cant as ρ → 1. Another interesting observation is that
the detection performance for this distributed detection system
gets better when the interference between two channels gets
larger. Because of the existence of the Gaussian noises W1

and W2, the side information/disturbance from the other sensor
helps the relay node to better determine the correct underlying
hypothesis.

V. CONCLUDING REMARKS

We considered the system design problem for a wireless
sensor network where the local information is sent to the
destination via a relay network. The necessary conditions
for the optimal system were established. The form of the
optimal fusion rule was shown to be a linear combination
of the channel statistics. Similar forms of the optimal local
sensor rules and relay rules were also established under certain
independence assumptions. Future investigation such as the
robust design of decision rules against channel uncertainty is
underway. Details of this work can be found in [12].
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