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ABSTRACT

In sensor network self-localization, anchor nodes provide a conve-
nient means to disambiguate scene translation and rotation, thereby
affording estimates in an absolute coordinate system. However, lo-
calization performance depends on the positions of the anchor nodes
relative to the unknown-location nodes. Conventional wisdom in the
literature is that anchor nodes should be placed around the perimeter
of the network. In this paper, we show analytically why this strategy
works well universally. We demonstrate that perimeter placement
forces the information provided by the anchor constraints to closely
align with the subspace that cannot be estimated from inter-node
measurements: the subspace of translations and rotations. Examples
quantify the efficacy of perimeter placement of anchors.

Index Terms— sensor network localization, anchor nodes, con-
strained estimation, principal angles, subspace alignment

1. INTRODUCTION

In the majority of sensor network applications, knowledge of the
absolute sensor positions is necessary in order to obtain meaning-
ful information from sensed data. Numerous localization algorithms
have been proposed to establish sensor locations from inter-sensor
measurements, such as distances, time-of-arrival, time-difference-
of-arrival or received-signal-strength (see, e.g. [1], and references
therein). These inter-sensor measurements are, however, invariant
to translations and rotations of the sensor network; meaning that
the measurements alone only provide information about the relative
shape of the network—not its absolute location, as is needed in most
environmental monitoring applications.

In order to regularize the absolute localization problem, addi-
tional information or assumptions are needed about the network. We
could, for example, specify the location of the scene centroid and
the angle from the centroid to one of the sensors. In a Bayesian set-
ting, prior distributions on a subset of sensor positions can be used
to regularize the problem [2]. As the variance of these priors goes to
zero, this is equivalent to precisely specifying the location of a subset
of the sensors. Known-location sensors are called anchor nodes (or
beacon nodes), and they are commonly used in localization because
of their relative ease of measurement. However, the performance of
absolute localization is sensitive to the position of the anchor nodes
relative to the remainder of unknown-location nodes.

Conventional wisdom in the localization literature is that an-
chor nodes should be uniformly spread around the perimeter of the
network—observations made empirically by several researchers [3,
4, 5] for multiple algorithms and measurement types. In this paper
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we provide analytical justification that uniform perimeter placement
is an optimal strategy in the absence of other information about the
sensor locations.

2. BACKGROUND

2.1. Sensor localization

In anchor-based localization the positions θa = [x1 y1 . . . xna
yna

]
of a set of na anchor nodes and set of measurements z are used to es-
timate the positions θu = [xna+1 yna+1 . . . xn yn] of nu = n−na

unknown-location nodes. The measurements are inter-node mea-
surements between the n sensors but need not contain all pairwise
combinations. In the following it will be useful to consider the equiv-
alent problem of estimating θ = [θa, θu] under a constraint on θa. In
order to quantify localization performance, we consider the Cramér-
Rao bound (CRB) for θu. Fisher’s information matrix J(θa, θu) for
θu depends on the locations of the unknown-location sensors as well
as the anchor locations, and it also depends on the type of inter-node
measurements and the distribution of the measurement noise. If all
of these quantities were known, we could find the CRB-optimal an-
chor locations as

θ∗a = arg min
θa

tr J−1(θu, θa). (1)

Alternatively, we consider an anchor placement strategy which
does not depend on the sensor positions or the noise distributions.
When the measurements z are invariant to global translations and
rotations of the entire scene θ—as they are for distance and time-of-
arrival measurements—we are not able to uniquely estimate θ with-
out the anchors constraining a portion of the network. That is to say,
there are an infinite number of scene configurations {θ} (all trans-
lations and rotations of one another) which are all equally likely of
producing a given set of measurements z. The anchor nodes remove
this ambiguity, and as such, in lieu of any additional information,
should be positioned in such a way that this translational and rota-
tional ambiguity is minimized in some sense.

2.2. Constraint and transformation subspaces

We may write the anchor constraint as

CT
a θ = θ0

a, (2)

where CT
a = [I2na

0] ∈ {0, 1}2na×2n extracts the anchor coor-
dinates from θ, and θ0

a are the constrained anchor positions. The
components of θ in the range space R(Ca) are fully determined by
the constraint. We call C = R(Ca) the constraint subspace.
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Fig. 1: Constraint alignment example. When the linear constraints
are closely aligned with the non-measurable subspace, lower esti-
mation error results. Here, constraint c1 is closest to the nullspace
N (A) and the resulting x-uncertainty is less than for constraint c2.

In [6], a linear approximation of the space of all translations and
rotations of θ was given as the span of the three 2n-vectors

vx =
1

c1

⎡
⎢⎢⎢⎢⎢⎣

1
0
1
0
...

⎤
⎥⎥⎥⎥⎥⎦

, vy =
1

c1

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
1
...

⎤
⎥⎥⎥⎥⎥⎦

, vφ =
1

c2

⎡
⎢⎢⎢⎢⎢⎣

−(y1 − ȳ)
(x1 − x̄)
−(y2 − ȳ)
(x2 − x̄)

...

⎤
⎥⎥⎥⎥⎥⎦

, (3)

where vx and vy represent x and y translations, vφ corresponds to ro-
tation about the centroid (x̄, ȳ), and c1 = n

1

2 and c2 = (
∑n

i=1
(xi−

x̄)2 + (yi− ȳ)2)
1

2 are normalization constants. That is, (θ + αxvx)
and (θ + αyvy) provide x- and y-translated versions of θ, while
(θ + αφvφ) locally approximates a rigid rotation of θ. As such, we
may say that the measurements do not provide any information about
the components of θ in V = R(V ), where V = [vx vy vφ]. We call
V the transformation subspace.

Intuitively, it is desirable for the constraints to provide as much
information as possible about the components of θ in the subspace
V which is not informed upon by measurements. Figure 1 illustrates
an example of an under determined linear system where the mea-
surements y = Ax + e provide no information about the value of x
in the nullspace N (A). The error term e establishes an uncertainty
band aboutN (A). Two constraint vectors c1, c2 are considered with
corresponding constraints cT

i x = hi, i = 1, 2, for scalars hi.
Specifying the value of x along the direction ci constrains x to the
subspace orthogonal to ci and establishes a “cut” through the uncer-
tainty ribbon. When the angle φi between ci andN (A) is small, the
resulting uncertainty in x is small. In the example, φ1 < φ2 and c1

results in lower final uncertainty in x.
In general, when the constraint and uncertain subspaces have

larger dimensions, there are many angles between the vectors c ∈ C
and v ∈ V . If any vector v ∈ V is orthogonal to all of C then at least
one component (direction) of θ remains completely unconstrained
and unspecified by measurements. As a surrogate to the anchor opti-
mization problem in Eq. (1) we consider the anchor locations which
minimize the maximum angle between C and V . We will see in the
following section that this strategy is independent of the unknown
sensor locations θu.
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Fig. 2: Sample network with 10 unknown-location sensors. Exam-
ples will add additional anchor nodes to the scene in order to perform
absolute localization. The circle indicates the RMS radius of the 10
sensors.

2.3. Principal angles

For reference, we summarize in this subsection the definition and
some properties of principal angles between subspaces.

Let A and B be two subspaces of dimension da and db respec-
tively, db ≥ da. The principal angles φ1, . . . , φda

∈ [0, π/2] be-
tween A and B are defined recursively [7] as

cos φi = max
a∈A
||a||=1

max
b∈B
||b||=1

aT b = aT
i bi (4)

subject to

aT bj = 0 j ∈ {1, . . . , i− 1} (5)
bT aj = 0 j ∈ {1, . . . , i− 1}. (6)

The principal angles satisfy 0 ≤ φ1 ≤ · · · ≤ φda
≤ π/2 and φda

is the largest angle between any vector in A and any vector in B not
orthogonal to A.

The principal angles may be computed as

cos φi = σi i ∈ {1, . . . , da}, (7)

where σi is the ith largest singular value of AT B, with orthonormal
matrices A and B having column spans equal to A and B, respec-
tively.

3. OPTIMAL ANCHOR POSITIONS

In this section we consider finding the anchor positions which are
optimal in the sense that they minimize the angles between the con-
straint subspace C and the unknown transformation space V .

3.1. Derivation of principal angles

We assume, without loss of generality, that the centroid (x̄, ȳ) is at
the origin (0, 0) and that the number of anchors na ≥ 3 since this is
sufficient to disambiguate translations, rotations, and mirror images.
The dimension of V is 3, so there are only 3 principal angles. The
matrices V and Ca have orthonormal columns spanning V and C;
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and, we seek the singular values of the 3× 2na matrixQ = V T Ca,
or the eigenvalues of QQT . Here, Q is

Q =

⎡
⎢⎣

1

c1
0 1

c1
0 . . . 1

c1
0

0 1

c1
0 1

c1
. . . 0 1

c1
−y1

c2

x1

c2

−y2

c2

x2

c2
. . .

−yna

c2

xna

c2

⎤
⎥⎦ , (8)

and

QQT =

⎡
⎣

q 0 a
0 q b
a b c

⎤
⎦ , (9)

where q = na

c2
1

, a = −1

c1c2

∑na

i=1
yi, b = 1

c1c2

∑na

i=1
xi, and c =

1

c2
2

∑na

i=1
(x2

i + y2
i ). The eigenvalues of QQT , in order from largest

to smallest, are

λ1 =
1

2
(c + q) +

1

2

√
(c− q)2 + 4(a2 + b2) (10)

λ2 = q (11)

λ3 =
1

2
(c + q)− 1

2

√
(c− q)2 + 4(a2 + b2). (12)

The principal angles are

φi = cos−1
√

λi i = 1, 2, 3. (13)

3.2. Angular positioning of anchors

Equivalent to minimizing the maximum principal angle between C
and V , we maximize the minimum eigenvalue λ3. Observe that

a2 + b2 =
(x̄a)2 + (ȳa)2

(n/n2
a) ||θ||2 , (14)

where x̄a is the average x-coordinate of the anchor nodes and ȳa is
the average y-coordinate. With respect to a and b, λ3 is maximized
when a2 + b2 = 0, which occurs when the mean x and mean y
coordinates of the anchors are zero. One configuration that achieves
this is when all anchors are uniformly distributed around a circle of
any radius.

With respect to c, λ3 achieves its maximum value of q whenever
c ≥ q.

3.3. Radial positioning of anchors

The variable c may be written

c =
||θa||2

||θa||2 + ||θu||2 . (15)

Therefore, c may be made arbitrarily large by placing the anchors
progressively farther from the scene center. When c ≥ q, we have
λ2 = λ3 = na/n and λ1 = c. Hence, having maximized the
two smallest eigenvalues we could proceed to maximize λ1, the
largest eigenvalue. λ1 is maximized by maximizing ||θa||, which is
achieved by pushing all of the anchor nodes as far out from the cen-
troid as possible (given measurement and deployment constraints).
However, because the smallest eigenvalue (largest principal angle)
dominates performance, we expect negligible performance in ex-
tending λ1 significantly beyond the other two eigenvalues λ2 =
λ3 = na/n. Therefore, we attempt to equate all three eigenvalues.
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Fig. 3: Mean-square localization error versus maximum principal
angle φ3 for the network in Fig. 2 using 3 anchor nodes.

Setting λ1 = c = na/n, we solve

||θa||2
||θa||2 + ||θu||2 =

na

n
(16)

for ||θa||2 and obtain

||θa||2 =
na

n− na

||θu||2. (17)

If we assume that all na anchors have a common radius r0, then
||θa||2 = nar2

0 . Substituting this and nu = n − na into (17) and
solving for r0 we find

r0 =
||θu||√

nu

. (18)

The quantity r0 may be interpreted as the root-mean-square (RMS)
distance of the unknown-location sensors from the origin. For the
sample network in Figure 2, the RMS sensor radius r0 is illustrated
by the circle in the figure. When the anchors are all uniformly spaced
around a circle of radius r0, all three principal angles will be equal to
φ = cos−1(

√
na/n). In practice, it is simpler to place the anchors

around the sensor field perimeter which will always have a radius
greater or equal to r0.

4. EXAMPLES

As in Eq. (1), we take as our performance metric the trace of the
CRB. In these examples we assume that all sensors (unknown-location
nodes and anchors) make pairwise distance measurements to one
another and that the distance measurements are independently cor-
rupted by zero-mean Gaussian noise with variance σ2. Fisher’s in-
formation matrix (FIM) for the non-anchors may be written J =
1/σ2J1(θu, θa), where J1 is the FIM corresponding to σ = 1. The
mean-square error bound is e = tr J−1. See [1] for FIM derivations.

In Figure 3 we plot the CRB localization error of the sensors
in Figure 2 versus the maximum principal angle φ3. This plot was
generated by randomly picking 1000 locations for an anchor set of
na = 3 nodes. For each anchor set location, the error and maximum
principal angle were calculated and plotted. As the maximum an-
gle approaches 90◦ at least one dimension becomes uninformed by
either constraints or measurements and the estimation error rapidly
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Fig. 4: Mean-square localization error of the sensors in Fig. 2 ver-
sus common anchor radius r for 3 anchor nodes uniformly spaced
around a circle. The vertical bar indicates the RMS radius r0 of the
10 unknown-location sensors.

increases. The decreasing nature of localization error with decreas-
ing maximum principal angle φ3 supports the assertion that aligning
the constraint and transformation subspaces provides a viable heuris-
tic for anchor node placement. The error is not monotonic with φ3

because this single measure does not capture all of the interactions
between the constraints and measurements, however minimizing the
subspace angle is a good surrogate performance metric for minimiz-
ing RMS localization error.

In Figure 4 we plot CRB localization error for the sensors in
Figure 2 versus a common anchor radius r for three anchors spaced
equally around an r-radius circle. The point r = r0 = 3.76m is
shown on the figure by the vertical bar. As expected, we see negligi-
ble performance improvement for r > r0.

Finally, in Figure 5 we compare the uniform perimeter place-
ment strategy with optimal anchor locations derived by an oracle
with perfect knowledge of the sensor positions. In this example 1000
networks were generated, each consisting of 10 unknown-location
sensors uniformly distributed in a circular region of radius 50m. For
each network, the oracle finds the optimal anchor positions θ∗a of
three anchors from Eq. (1). We then compare the performance of
θ∗a to perimeter-placed anchors θp

a (radius=50m, 120◦ spacing). Let
e(θp

a) and e(θ∗a) denote the errors for perimeter placement and op-
timal placement, respectively. Using the 1000 network realizations,
we plot in Figure 5 a histogram of the ratio γ = e(θp

a)/e(θ∗a). From
the figure we see that optimal anchor placement, utilizing perfect
knowledge of the sensor locations, is only marginally better than
perimeter placement which only assumes sensors are constrained to
a particular circular region. On average, the error of perimeter place-
ment exceeds the error of optimal placement by only 4%.

5. CONCLUSIONS

In this paper we have demonstrated analytically that uniform perime-
ter placement of anchor nodes is a logical choice in the absence
of any detailed information about sensor positions. This result was
previously known only through limited empirical observations. We
demonstrated that the relative alignment between the constraint sub-
space and the space of measurement-independent translations and
rotations can be controlled through anchor node placement and that
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Fig. 5: Histogram of γ = e(θp
a)/e(θ∗a) indicating that the perfor-

mance of perimeter placement is nearly as good as the oracle place-
ment bound.

uniform perimeter placement optimally aligns these subspaces.
While the examples in this paper considered fully connected net-

works with distance measurements and Gaussian noise, the analytic
results are more general. The uniform perimeter placement strat-
egy, which optimally aligns the constraint and transformation sub-
spaces, makes no assumptions about noise distributions or measure-
ment connectivity and applies to any scenario where measurements
are invariant to translation and rotation. This includes many mea-
surement types such as distances, time-of-arrival, time-difference-
of-arrival, and received-signal-strength.
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