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Abstract— The paper studies distributed average consensus
in sensor networks, when the sensors exchange quantized data
at each time step. We show that randomizing the exchanged
sensor data by adding a controlled amount of dither results in
almost sure (a.s.) convergence of the protocol, if the network
is connected. We explicitly characterize the mean-squared error
(with respect to the desired consensus average) and show that,
by tuning certain parameters associated with the protocol, the
mean-squared error can be made arbitrarily small. We study
the trade-offs between the rate of convergence and the resulting
mean-squared error. The sensor network topology plays an
important role in determining the convergence rate of the
algorithm. Our approach, based on the convergence of controlled
Markov processes, is very generic and can be applied to many
other situations of imperfect communication. Finally, we present
numerical studies, which verify our theoretical results.

Index Terms— Distributed Consensus, Quantized Information
Exchange, Topology, Laplacian, Randomized Algorithm.

I. INTRODUCTION

Distributed average consensus computes the global average
of sensor data in a distributed fashion in sensor networks,
using only local inter-sensor communication (see, e.g., [1].)
It finds applications in many practical problems in distributed
sensor networking, including distributed detection, estimation,
swarm aggregation, flocking. In most cases, these decentral-
ized networking applications operate under severe resource
constraints, both in terms of computation and communication.
In particular, sensors in a wireless networked environment
communicate by exchanging quantized rather than analog data,
where the bandwidth or data rate allocated to a particular
inter-sensor communication channel is directly related to the
number of bits used by the quantizer. In this paper, we provide
an algorithm, QC, for average consensus with quantized inter-
sensor information exchange and analyze its performance and
convergence properties.

We highlight several key features of our algorithm. First,
we note that, with no randomization, the quantization er-
rors will, in general, accumulate and lead to divergence and
unboundedness of the sensor states. Thus, deliberately, we
randomize our algorithm by adding a controlled amount of
statistical dither to the sensor data before quantization. This
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results in good statistical properties of the quantization error
sequence, which are exploited in the algorithm. Another key
feature is that the algorithm uses a properly scaled sequence of
decreasing link weights, which keep the error resulting from
randomization and quantization uniformly bounded at each
step (to be explained in more detail in the paper.) We use
results from the theory of controlled Markov processes that
show that, for a connected network, our algorithm leads to
almost sure (a.s.) convergence of the sensor states to the same
finite random variable. In other words, the sensors asymp-
totically reach consensus and we explicitly characterize the
mean-squared error (m.s.e.) between the desired average and
the converged sensor states. The m.s.e. can be made arbitrarily
small by rescaling the sequence of link weights associated
with the algorithm. However, improving the accuracy of the
final estimate in this way, slows down the convergence rate
of the algorithm and we find an interesting trade-off between
convergence rate and m.s.e. Finally, we note that our approach
is very generic and can be extended with similar results to
other situations of imperfect communication, like random link
failure, additive noise, etc. Due to lack of space, we will
mainly highlight the key steps in the derivation of these results.
Detailed derivation and analysis can be found in [2].

The distributed consensus problem with quantized trans-
mission has been studied recently in [3], [4]. The algorithm
in [3] is restricted to integer-valued initial sensor states, where
at each iteration the sensors exchange integer-valued data.
It is shown there that the sensor states are asymptotically
close (in the appropriate sense defined there) to the desired
average, but may not reach absolute consensus. In [4], a
randomized algorithm is considered, and it is shown that the
expected sensor states converge to the desired average, but no
analytical bounds on the mean-squared error are presented. In
contrast, the QC algorithm considered in this paper, leads to
a.s. consensus of the sensor states to a finite random variable,
in addition to the fact that the expected sensor states converge
to the desired average. We explicitly characterize the resulting
m.s.e. and show that, by tuning certain parameters of our
algorithm, the m.s.e. can be made arbitrarily small, though at a
cost of convergence rate. We also mention in this context some
recent work on consensus in random communication scenarios.
The case for a Bernoulli link failure model was treated in [5],
while a more general link failure model was studied in [6].
However, these papers do not assume quantized transmission.

We comment briefly on the organization of the overall
paper. Section II sets up the problem and reviews preliminary
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concepts. The proof of a.s. convergence of the randomized
algorithm is in Section III. We study the trade-offs between
the m.s.e and the convergence rate in Section IV. Section V
presents a numerical study. Finally, Section VI concludes the
paper and comments on the generalizations of our approach.

II. PROBLEM FORMULATION AND PRELIMINARIES

We model the sensor network by a graph G = (V,E), where
V represents the set of N nodes in the network and E is the
set of M edges or communication links among the sensors.
For clarity, we assume that the network topology remains
unchanged throughout the process. However, our approach
can handle randomly varying topologies, as commented in
Section VI. We define the N × N adjacency matrix, A, as

An,l =
{

1 if (n, l) ∈ E
0 otherwise

(1)

The graph Laplacian, L, is then defined as

L = D − A (2)

where D = diag (d1 · · · dN ) is the diagonal matrix of node de-
grees. 1 The Laplacian L is a symmetric positive-semidefinite
matrix and hence its eigenvalues can be arranged as

0 = λ1 (L) ≤ λ2 (L) ≤ · · · ≤ λN (L (i)) (3)

For a connected network λ2 (L) > 0 (see [7].) Throughout the
paper, we assume that the sensor network is connected.

Let x (0) ∈ R
N×1 be the vector of initial sensor states.

Define the average, r = (1/N)1T x (0), where 1 is the
N × 1 vector of ones. In distributed average consensus,
starting from some initial state, x (0), the sensors compute
the average r iteratively, where at each iteration each sensor
has access only to its neighboring states. For consensus with
quantization, the sensors can exchange only quantized state
information with their neighbors. In particular, we assume
that each inter-sensor communication channel uses a uniform
quantizer, whose input-output relation may be modeled by the
quantizing function2, q (·) : R → Q,

q (y) = bΔ,

(
b − 1

2

)
Δ ≤ y <

(
b +

1
2

)
Δ (4)

where y ∈ R is the channel input and Δ > 0 is the
quantization step-size. We may write

q (y) = y + e (y) (5)

where e (y) is the quantization error, and we have

−Δ
2

≤ e (y) ≤ Δ
2

, ∀y (6)

We now present our randomized algorithm QC for quantized
consensus.

1The neighborhood of a node n in G is defined as Ωn =
{l ∈ V : (n, l) ∈ E (i)}. The corresponding node degree, dn is the number
of edges incident to it and is given by dn = |Ωn|.

2In this case, the quantizer output takes values in the countable set, Q =
{kΔ | k ∈ Z}. However, if the initial state x (0) is bounded, only finitely-
many quantization steps will suffice (see [2].)

QC Algorithm: Define the consensus subspace, C, as

C =
{
x ∈ R

N×1 | x = a1, a ∈ R
}

(7)

Consider the sequence {νnl (i)}i≥0,1≤n,l≤N of i.i.d. ran-
dom variables uniformly distributed on [−Δ/2, Δ/2). Let
{α (i)}i≥0 be a real number sequence satisfying

α (i) > 0
∑
i≥0

α (i) = ∞
∑
i≥0

α2 (i) < ∞ (8)

Denoting by xn (i) the state of the n-th sensor at iteration i,
the QC algorithm consists of the following recursion:

xn (i + 1) = (1 − α (i) dn) xn (i)+α (i)
∑
l∈Ωn

q (xl (i) + νnl (i))

(9)
with the initial sensor state vector x (0).

In Section III, we show that, under the QC algorithm,
the state vector sequence, {x (i)}i≥0, converges a.s. to the
consensus subspace C. In other words, there exists a finite
random variable, θ, such that

P

[
lim

i→∞
x (i) = θ1

]
= 1 (10)

The m.s.e, ζ, is then given by

ζ = E [θ − r]2 (11)

and this is explicitly characterized in Section IV.

III. PROOF OF CONVERGENCE OF QC

The recursive update in eqn. (9) is rewritten as

xn (i + 1) = (1 − α (i) dn) xn (i) + α (i)
∑
l∈Ωn

(xl (i)

+νnl (i) + εnl (i)) (12)

where εnl (i) is the quantization error and given by

εnl (i) = q (xl (i) + νnl (i)) − xl (i) − νnl (i) (13)

By construction, the i.i.d. set {νnl (i)}1≤n,l≤N is independent
of x (i). Then, it can be shown from results in statistical
quantization theory (see [8]) that the set {εnl (i)}1≤n,l≤N

consists of i.i.d. random variables uniformly distributed on
[−Δ/2, Δ/2) and independent of x (i). Introduce

Υn (i) = −
∑
l∈Ωn

νnl (i) , Ψn (i) = −
∑
l∈Ωn

εnl (i) (14)

The update in eqn. (12) can be put in vector form as

x (i + 1) = x (i) − α (i) [Lx (i) + Υ (i) + Ψ (i)] (15)

where the random vectors Υ (i) and Ψ (i) are independent of
the state x (i) and have independent components.

We now give a result on the convergence of sample paths
of Markov processes, which will be used later.

Theorem 1 Consider a Markov process, {x (i)}i≥0 on R
N×1.

Define the operator L, which acts on non-negative functions
V (i,x) , i ≥ 0, x ∈ R

N×1 by

LV (i,x) = E [V (i + 1,x (i + 1)) |x (i) = x] − V (i,x) a.s.
(16)
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Now suppose there exists a non-negative function
V (i,x) , i ≥ 0, x ∈ R

N×1 and a set B ⊂ R
N×1

with the following properties:

1)
inf

i≥0,x∈Vε(B)
V (i,x) > 0, ∀ε > 0 (17)

V (i,x) ≡ 0, x ∈ B, lim
x→B

sup
i≥0

V (i,x) = 0 (18)

where Vε (B) = {x ∈ R
N×1 | infy∈B ρ (x, y) ≥ ε}.

2)

LV (i,x) ≤ g (i) (1 + V (i,x)) − α (i) ϕ (i,x) (19)

where ϕ (i,x) , i ≥ 0, x ∈ R
N×1 is a non-negative function

such that
inf

i,x∈Vε(B)
ϕ (i,x) > 0, ∀ε > 0 (20)

3)

α (i) , g (i) > 0,
∑
i≥0

α (i) = ∞,
∑
i≥0

g (i) < ∞ (21)

Then, the Markov process {xi}i≥0 with arbitrary initial dis-
tribution converges a.s. to B as i → ∞.

Proof: The proof is given in [2] and relies on [9]. We
omit it here due to lack of space.
We are now in a position to give the main theorem on the a.s.
convergence of the QC algorithm.

Theorem 2 Let x (0) be the initial sensor state vector and r
the corresponding average, to be computed. Consider the state
vector sequence, {x (i)}i≥0, generated by the QC algorithm.
Then there exists a finite random variable θ, such that

P

[
lim

i→∞
x (i) = θ1

]
= 1 (22)

Proof: We outline the key steps of the proof. Details
can be found in [2]. It is clear that the state vector sequence
{x (i)}i≥0 generated by the QC algorithm is a Markov pro-
cess. Assuming the network is connected, it can be shown that
this Markov process satisfies the conditions of Theorem 1 with

V (i,x) = xT Lx, B = C (23)

where L is the graph Laplacian and C is the consensus
subspace, defined in eqn. (7). We then have, by Theorem 1,
that x (i) converges a.s. to the set C. This is equivalent to
the fact that, asymptotically, the components of x (i) reach
consensus and hence tend to their average value. In other
words, we have

P

[
lim

i→∞
‖x (i) − xavg (i)1‖ = 0

]
= 1 (24)

where, xavg (i) = (1/N)1T x (i) is the average of the sensor
states at time i, with xavg (0) = r.

The proof will be completed if we can show that the random
sequence, {xavg (i)}i≥0, converges a.s. to some finite random
variable θ. To this end, we note that the sequence {xavg (i)}i≥0

is given by the following recursion:

xavg (i + 1) = xavg (i) − α (i)
[
Υ (i) + Ψ (i)

]
, xavg (0) = r

(25)

where Υ(i) = (1/N)1T Υ (i) and Ψ(i) = (1/N)1T Ψ (i).
Clearly, Υ(i) and Ψ(i) are independent of x (i). Also,
it follows from the fact that the components of the sets
{νnl (i)}1≤n,l≤N and {εnl (i)}1≤n,l≤N are i.i.d. uniformly
distributed on [−Δ/2, Δ/2), that

E
[
Υ(i)

]
= E

[
Ψ(i)

]
= 0, ∀i (26)

Also, we have

E

[
Υ

2
(i)

]
= E

[
Ψ

2
(i)

]
=

MΔ2

6N2
, ∀i (27)

where M is the number of edges in the network. It can be
shown that the sequence {xavg (i)}i≥0 is a martingale with
respect to the filtration 3

Fi = σ{x (0) , {Υ (j)}0≤j<i, {Ψ (j)}0≤j<i} (29)

We then have

E
[
x2

avg (i + 1)
]

= E
[
xavg (i) − α (i)

[
Υ(i) + Ψ (i)

]]2
(30)

= E
[
x2

avg (i)
]
+ α2 (i)

[
E

[
Υ

2
(i)

]

+E

[
Ψ

2
(i)

]
+ 2E

[
Υ(i) Ψ (i)

]]

≤ E
[
x2

avg (i)
]
+ α2 (i)

[
E

[
Υ

2
(i)

]
+ E

[
Ψ

2
(i)

]

+2
(
E

[
Υ

2
(i)

])1/2 (
E

[
Ψ

2
(i)

])1/2
]

= E
[
x2

avg (i)
]
+

2α2 (i) MΔ2

3N2

where we have used the independence assumptions and
eqns. (26,27). Continuing the recursion and using the fact that∑

i≥0 α2 (i) < ∞, we have

E
[
x2

avg (i)
] ≤ x2

avg (0) +
2MΔ2

3N2

∑
j≥0

α2 (j) , ∀i (31)

We note that {xavg (i)}i≥0 is an L2-bounded martingale and
hence converges a.s. and in L2 to a finite random variable θ.
In other words, there exists a finite random variable θ, such
that,

P

[
lim

i→∞
xavg (i) = θ

]
= 1, lim

i→∞
E [xavg (i) − θ]2 = 0 (32)

The theorem then follows from eqns. (24,32).

IV. MEAN-SQUARED ERROR AND CONVERGENCE RATE

Section III shows that asymptotically the states of the
sensors reach consensus and, in fact, converge a.s. to a
finite random variable θ. Viewing θ as an estimate of r, we
characterize its statistical properties. We show that θ is an
unbiased estimate of r, which is a desirable property. To this
end, we note that from eqn. (25) it follows

E [xavg (i)] = r, ∀i ≥ 0 (33)

3A filtration, F , is a non-decreasing sequence of sigma algebras. A
stochastic process, {z (i)}i≥0, is F adapted, if z (i) is Fi measurable for
each i. An integrable process, {z (i)}i≥0, which is adapted to a filtration F ,
is a martingale if

E [z (i + 1) |Fi] = z (i) a.s. (28)
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Since, the sequence {xavg (i)}i≥0 converges to θ in L2, it
converges also in L1, and we have

E [θ] = lim
i→∞

E [xavg (i)] (34)

= r

Thus, θ is an unbiased estimate of the desired average r.
To compute the m.s.e. ζ (see eqn. (11)), we note that the
sequence of non-negative functions (xavg (i) − r)2 converges

a.s. to (θ − r)2. Hence, by Fatou’s lemma,

E [θ − r]2 ≤ lim inf
i→∞

E [xavg (i) − r]2 (35)

Using exactly similar manipulations, as used in the derivation
of eqn. (31), it can be shown that

E [xavg (i) − r]2 ≤ 2MΔ2

3N2

∑
j≥0

α2 (j) , ∀i (36)

Combining eqns. (35,36) it follows that

ζ ≤ 2MΔ2

3N2

∑
j≥0

α2 (j) (37)

which gives an explicit upper bound on the m.s.e. We comment
on this upper bound. We note that ζ increases with increas-
ing Δ. This is intuitive, because a coarser quantization will
typically lead to larger m.s.e. We now point out another very
interesting feature of the QC algorithm. Since,

∑
j≥0 α2 (j) <

∞, we note that the m.s.e. ζ can be made as small as possible,
by properly rescaling the weight sequence {α (j)}j≥0 by a
constant. This means that the QC algorithm can be tuned to
make ζ as small as desired. But, this leads to an interesting
trade-off between ζ and the convergence rate of the algorithm.4

Thus, an attempt to increase the accuracy of the algorithm will
lead to a slower convergence rate. This trade-off is studied
formally in [2] and we omit it here due to lack of space.

V. NUMERICAL STUDIES

We present a numerical study in this section. We consider
N = 100 sensors. The communication network is taken to be
a Erdös-Rényi random graph with M = 5N edges (the edges
are chosen uniformly randomly from the set of all possible
N (N − 1) /2 edges.) For half of the sensors, the initial data is
sampled independently from a normal distribution with mean
50 and variance 10, while for the other half from a normal
distribution with mean 70 and variance 10. The quantization
step-size is taken to be Δ = 5 and the weight sequence, as
α (i) = 1/5i. The blue line (with stars) in Fig. 1 denotes the
path followed by the state of a randomly chosen node as the
QC algorithm progressed, while the red line (solid) denotes
the actual average r. Clearly, the plot verifies our theoretical
results.

VI. CONCLUSION AND GENERALIZATIONS

In this paper, we consider a distributed QC algorithm for
average consensus when sensors exchange quantized state
information. We show that, if the network is connected, the

4By convergence rate, we mean here, informally, the rate at which the state
vector sequence {x (i)}i≥0 converges to θ1.
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Fig. 1. QC algorithm on a network of N = 100 sensors.

sensors asymptotically reach consensus and converge to a
finite random variable θ. We note that θ is an unbiased estimate
of the desired average r, and also the mean-squared error, ζ,
between θ and r can be made arbitrarily small, by rescaling the
link weight sequence {α (i)}i≥0. We also point out the trade-
off between accuracy (smaller ζ) and the convergence rate
of the QC algorithm. Finally, we note that the QC algorithm
can be extended to a wide range of situations involving
imperfect inter-sensor communication. Examples include ran-
domly failing communication links, additive channel noise,
data dependent noise, etc. For example, in [10] we show that,
if simultaneously we have additive channel noise and random
Bernoulli link failures, a distributed algorithm can be designed,
such that the sensors reach arbitrarily close to the desired
average value, if λ2 (E [L]) > 0 (note that the Laplacians are
now random.)

REFERENCES

[1] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Automat.
Contr., vol. 49, no. 9, pp. 1520–1533, Sept. 2004.

[2] S. Kar and J. Moura, “Distributed consensus algorithms in sensor
networks: Quantized data,” November 2007, submitted for publication,
30 pages.

[3] A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” Automat-
ica, vol. 43, pp. 1192–1203, July 2007.

[4] T. C. Aysal, M. Coates, and M. Rabbat, “Distributed average consensus
using probabilistic quantization,” Madison, Wisconsin, USA, August
2007, pp. 640–644.

[5] S. Kar and J. M. F. Moura, “Distributed average consensus in sensor
networks with random link failures,” in The 32nd IEEE International
Conference on Acoustics, Speech, and Signal Processing, Honolulu,
Hawaii, April 2007.

[6] A. T. Salehi and A. Jadbabaie, “On consensus in random networks,” in
The Allerton Conference on Communication, Control, and Computing,
Allerton House, IL, September 2006.

[7] F. R. K. Chung, Spectral Graph Theory. Providence, RI : American
Mathematical Society, 1997.

[8] L. Schuchman, “Dither signals and their effect on quantization noise,”
IEEE Trans. Commun. Technol., vol. COMM-12, pp. 162–165, Decem-
ber 1964.

[9] M. Nevel’son and R. Has’minskii, Stochastic Approximation and Recur-
sive Estimation. Providence, Rhode Island: American Mathematical
Society, 1973.

[10] S. Kar and J. Moura, “Distributed consensus algorithms in sensor
networks: Link failures and channel noise,” November 2007, submitted
for publication, 30 pages.

2284


