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ABSTRACT

Achieving consensus on common global parameters through totally
decentralized algorithms is a topic that has attracted considerable at-
tention in the last few years, in view of its potential application in
sensor networks. Several algorithms, along with their convergence
properties, have been studied in the literature, among which the most
popular are the (weighted) average consensus based schemes. One
of the most critical aspects of these algorithms is that they suffer
from catastrophic noise propagation. We show that the noise affect-
ing the system state variables has a variance that grows linearly with
the time index. In addition, we prove that encoding the information
on the first forward difference of the state variables rather than on
the state itself improves noise resilience, since it guarantees that the
asymptotic value of the consensus is affected by noise with bounded
variance. The results of our in-depth analysis of the effect of additive
noise on consensus algorithms are valid regardless of the noise sta-
tistics and for arbitrary network topologies, i.e., arbitrary Laplacian
matrices, and contain as special cases previously known results.

Index Terms— Sensor networks, Distributed algorithms, Dis-
tributed detection, Distributed estimation, Multisensor systems.

1. INTRODUCTION AND MOTIVATION

Endowing a sensor network with self-organizing capabilities is un-
doubtedly a useful goal to increase the resilience of the network
against node failure (or simply the switch to sleep mode) and avoid
potentially dangerous congestion conditions around the sink nodes.
Decentralizing decisions decrease also the vulnerability of the net-
work against damages to the sink or control nodes. Distributed com-
putation over a network and its application to statistical consensus
theory has a long history, starting with the pioneering work of Tsit-
siklis, Bertsekas and Athans on asynchronous agreement problem
for discrete-time distributed decision-making systems [4] and par-
allel computing [5]. A simple, yet significant, form of in-network
distributed computing is achieving a consensus about one common
observed phenomenon, without the presence of a fusion center. Dis-
tributed consensus algorithms have received great attention in the
recent years in view of their potential application in sensor networks
[6]. Excellent tutorials on distributed consensus techniques and their
applications are given in [7, 8].

The main drawbacks of classical consensus protocols [6]−[8]
are the lack of robustness against propagation delays and the high
sensitivity to additive noise affecting the state variables of the nodes.
More specifically, in the presence of propagation delays, these algo-
rithms either may not converge [6] or converge to a final consensus
value that depends on delays, network topology and initial condi-
tions of each node [9]. In the presence of additive noise [10] authors
show that, when considering average consensus problems on undi-
rected connected graphs, the average of the state variables undergoes
a random walk with linearly growing variance, thus preventing the

node values to converge to the average of the initial values in any
useful sense. These limitations make classical consensus algorithms
[7, 8] not suitable to be applied in a real sensor network scenario,
where in general both propagation delays and noise effects are not
negligible. In [11, 12], authors propose a novel distributed consensus
algorithm whose distinctive characteristic is the fact that consensus
is achieved on the asymptotic value of the first derivative of the state
variables, rather than on the state variables themselves, as classical
consensus algorithms do [7, 8]. Moreover, this approach was shown
to be robust against propagation delays [12].

In this work, we carry out an in-depth analysis of the effect of
additive noise on distributed consensus algorithms, considering both
classical ones [7, 8], and the one proposed in [11, 12]. In partic-
ular we focus on discrete-time systems and, as a consequence, we
consider the first forward difference instead of the derivative, for the
system in [11, 12]. Differently from the current works in the litera-
ture [10, 13, 14], we do not impose any constraint both on the noise
statistics and the network topology, as long as this last is described
in terms of a graph Laplacian. We will show that consensus algo-
rithms on the state exhibit catastrophic noise propagation, whereas
the corresponding algorithms on the first difference of the state ex-
hibit noise resilience. The reader is assumed to be familiar with the
graphs terminology, in particular with reference to consensus prob-
lems. Anyway, the relevant definitions can be found in [8] or [11].

2. SYSTEMMODEL

Consider a wireless sensor network composed ofN nodes (sensors),
where the interaction mechanisms among different sensors is de-
scribed in terms of a directed graph (digraph) with Laplacian matrix
L [11]. Now let use define the matrix

P = I − εL , (1)

with ε > 0 such that P is stochastic with positive diagonal entries,
i.e., 0 < ε < [maxk{lkk}]

−1, where lkk is the k-th diagonal el-
ement of L. Denoting by x the N -size vector gathering the state
variables of all sensors, we consider systems where the dynamics of
the overall network is governed by the following discrete-time dy-
namical model�

x(n + 1) = P x(n) + b + w(n) , n ≥ 0 ,

x(0) = x0 ∈ R
(2)

where b denotes a possible constant input vector, x0 is the initial
state and w(n) is the observation noise. The noise is a stochastic
process with the following characteristics

E {w(n)} = 0 , E

�
w(n)w(k)T

�
= Kwδn,k , (3)

where Kw is assumed to be positive definite, and δn,k is the Kro-
necker delta. Note that we do not impose any constraint on the sta-
tistics of the noise. As a consequence w(n) in (2) can model, for
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example, the additive Gaussian noise of noisy links, or the quantiza-
tion error in the possibly finite-precision representation of the state
variables, or any other kind of random noise. Moreover the noise
affecting different sensors can be correlated. It should be noted that
(2) is a quite general model and subsumes, as special cases and when
we omit the noise, several different systems proposed in the litera-
ture. In particular it can model both systems where consensus is
achieved on the state x(n) (in this case b = 0) [7, 8], and sys-
tems where consensus is achieved on the first difference of the state
Δx(n)=x(n + 1)− x(n) (in this case, in general b �= 0), which
constitute the discrete version of the system proposed in [11, 12]. In
both cases the evolution of (2) is governed by the behavior of P n

as n goes to infinity, and P , see (1), depends on the network topol-
ogy through L. So, it will be useful to exploit the following general
result, proven in [15].

Theorem 1. Assume that L is the Laplacian matrix of an arbitrary
directed 1 graph G and let K ≥ 1 be the multiplicity of the zero
eigenvalue of L. Then, there always exists an ordering of the ver-
tices of G such that L can be written as

L =

�
diag {L1, · · · , LK} 0

R A

�
, (4)

where L1, · · · , LK are irreducible Laplacian matrices correspond-
ing to strongly connected components of G and A, if present, is
nonsingular. Then, for the matrix P defined in (1) the following
asymptotic expression holds true

P
∞ = lim

n→∞
P

n =

�
Γ 0

−A−1RΓ 0

�
, (5)

where Γ=diag
�
11γ

T
1
, · · · ,1KγT

K

�
, and γi is the left eigenvector

of Li corresponding to the zero eigenvalue, satisfying 2 γT
i 1i = 1.

It is worth noting that Theorem 1 provide us with a very general re-
sult. Indeed, it is able to fully predict the structure ofP∞, whichever
is the network topology, and includes, as special cases, all the typi-
cal topologies encountered in the literature on consensus algorithms,
like undirected graphs, quasi-strongly connected and strongly con-
nected digraphs, and even not connected graphs. It is possible to
prove [15], and we will see in Section 4, that the structure (4) of
the Laplacian causes the node belonging to the strongly connected
components corresponding toL1, . . . , LK , to achieve consensus in-
dependently of each other, whereas the remaining nodes converge to
values that depend on the matricesA andR. WhenK = 1, i.e., G is
quasi-strongly connected, A and R are such that all nodes achieve
consensus [15]. In the sequel, without loss of generality, we assume
that nodes are ordered to comply with (4). Moreover, we will refer to
consensus in the broader sense of convergence as described above.

3. THE EFFECT OF ADDITIVE NOISE

In this section we analyze the effect of additive noise on consensus
algorithms. As we will see, the evolution of (2) and in particular the
impact of noise, strongly depend on the fact that we consider consen-
sus on the state x(n) or on its first forward difference Δx(n). For
the sake of precision, both x(n) andΔx(n) are stochastic processes
so, we are legitimate to speak about consensus, assumed it can be
achieved, only on the average. In the sequel we will consider sepa-
rately the two cases, computing for each the expected value and the
covariance matrix.

1We consider weighted loopless digraphs.
2
1i is the vector, of the proper size, with all entries equal to 1.

3.0.1. Consensus on x(n) (b = 0)

The system is
�

x(n + 1) = P x(n) + w(n) , n ≥ 0 ,

x(0) = x0

(6)

with the following evolution

x(n) = P
n
x0 +

n−1�
k=0

P
n−1−k

w(k) . (7)

Denoting by mx(n) = E {x(n)} and taking the expectation of (7)
we get

mx(n) = P
n
x0 , (8)

so that the expected value evolves as the state of the original noise-
less system, with corresponding asymptotic (vector) value

lim
n→∞

mx(n) = P
∞

x0 , (9)

where P∞ is as in (5).
Now let us consider the covariance matrix of x(n). From (7) and (8)
we get

Kx(n) = E

�
[x(n)−mx(n)] [x(n)−mx(n)]T

�
=

=

n−1�
k=0

P
k
Kw (P k)T . (10)

Using (10) we can compute the covariance matrix of x(n) for any
value of the index n. However, we need to determine how variances
evolve as n goes to infinity. The following theorem [15] gives such
a characterization.

Theorem 2. Denoting by σ2
1(n), · · · , σ2

N (n) the diagonal entries of
the covariance matrix Kx(n), the following inequalities hold true
for i = 1, . . . , N ,

λmin(Kw )

N
· n ≤ σ2

i (n) ≤ λmax(Kw ) · n (11)

where λmin(Kw ) and λmax(Kw ) are the minimum 3 and the max-
imum eigenvalues ofKw , respectively.

The result in Theorem 2 is consistent with the observations made
in [10] and greatly generalize them. In [10] authors consider the
particular case of average consensus with an underlying graph undi-
rected and connected, and they show that the average of the state
variables, namely 1

T x(n)/N , undergoes a random walk with a lin-
early growing variance. More generally, Theorem 2 states that the
noise affecting every sensor has the variance that grows linearlywith
the time index n, and moreover this result holds regardless of the
noise statistics and the network topology, as long as this last is de-
scribed in terms of a graph Laplacian.

From Theorem 2 we conclude that system in (6) when we look at
consensus on state variables is not robust with respect to the additive
noise, since conditions (11) prevent the system to converge to (9) in
any useful sense.

3Note that λmin(Kw ) > 0 sinceKw is assumed positive definite.
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3.0.2. Consensus onΔx(n) (b �= 0 in general)

The system is�
x(n + 1) = P x(n) + b + w(n) , n ≥ 0 ,

x(0) = x0

(12)

with the following evolution

x(n) = P
n
x0 +

n−1�
k=0

P
k
b +

n−1�
k=0

P
n−1−k

w(k) . (13)

In this case the presence of bmakes the asymptotic state diverging, in
general. Nonetheless, the first forward difference of the state vector
Δx(n) turns out to be a stochastic process with bounded variance.
In fact, from (13) we get

Δx(n) = x(n + 1)− x(n) = P
n(P − I)x0 + P

n
b +

+ w(n) + (P − I)

n−1�
k=0

P
n−1−k

w(k) . (14)

Now, let us evaluate the expected value and the covariance matrix of
Δx(n). From (14) we have

mΔx(n) = E {Δx(n)} = P
n(P − I)x0 + P

n
b . (15)

Thus, the corresponding asymptotic (vector) value is given by

lim
n→∞

mΔx(n) = P
∞(P − I)x0 + P

∞

b = P
∞

b , (16)

since P∞P = P∞. Note that (16) is the counterpart of (9) and
expresses the consensus value as a function of the sole vector b, re-
gardless of the initial state x0. Now, let us consider the covariance
matrix ofΔx(n). From (14) and (15) we get

KΔx(n) = Kw +

n−1�
k=0

(P − I)P k
Kw (P T )k(P − I)T , (17)

which allows us to compute the covariance matrix of Δx(n) for
any value of the index n. Actually, we are interested in evaluating
the asymptotic behavior ofKΔx(n) as the index n goes to infinity.
However, in this case (17) becomes a series and convergence issues
arise. The interesting result is that, as n → ∞, (17) converges to
a limit matrix. To demonstrate this result, we have to resort to the
properties of the solution of the discrete-time Lyapunov equation [2]
which are summarized in the following theorem

Theorem 3. Consider the discrete-time Lyapunov equation in the
indeterminateX

AXA
T + Q = X (18)

whereA, Q, X ∈ R
n×n, andQ is symmetric positive semidefinite,

and denote by λi(A) the i-th eigenvalue of A. If |λi(A)| < 1,
i = 1, . . . , n, then (18) has a unique solutionX , which is symmetric
and positive semidefinite. MoreoverX can be expressed in terms of
the following convergent series

X =

∞�
k=0

A
k
Q(AT )k . (19)

Proof. See [2].

Exploiting the results of Theorem 3 we are ready to fully character-
ize the behavior ofKΔx(n)when n goes to infinity, as the following
theorem shows.

Theorem 4. From the decompositionP = CJC−1, where J is the
Jordan canonical form ofP andC is a similarity transformation, let
us denote by P̃ = CJ̃C−1, where J̃ is the matrix obtained from J

by zeroing the eigenvalues equal to one. Then, the covariance matrix
KΔx(n) in (17) satisfies the following two equivalent asymptotic
expressions

lim
n→∞

KΔx(n) = Kw +
∞�

k=0

�
(P − I)P k

Kw (P T )k(P T − I)
�

= Kw + (P − I)X(P T − I) , (20)

where 4 X =
�
∞

k=0
P̃

k
Kw (P̃

T
)k is the unique solution of the

following discrete-time Lyapunov equation

P̃ XP̃
T

+ Kw = X . (21)

Proof. First of all let us consider how to compute the matrix P̃ .
Since P is a stochastic matrix, its spectrum is contained in the
unit disc of the complex plane [1]. Moreover, an application of the
Geršgorin disc theorem to the definition (1), leads to the conclusion
that the only eigenvalue of P with unit modulus is 1. As a conse-
quence, without loss of generality, it is always possible to write the
Jordan canonical form of P as

J =

�
Ir 0

0 DJ

�
(22)

where the identity matrix Ir collects the eigenvalues equal to one,
and DJ is a block diagonal matrix composed of Jordan blocks as-
sociated with the eigenvalues with modulus strictly less than 1. De-
noting by C the similarity transformation leading to (22), matrix P

can be represented as

P = C

�
Ir 0

0 DJ

�
C
−1 . (23)

As a consequence P̃ is obtained from (23) substituting Ir with 0r

P̃ = C

�
0r 0

0 DJ

�
C
−1 . (24)

It is worth noting that due to (24) the eigenvalues of P̃ have modulus
strictly less than 1.

Now, consider (17) and in particular the term (P −I)P k within
the summation. Exploiting (23) we get

(P − I)P k = C

�
0r 0

0 (DJ − I)

��
Ir 0

0 (DJ )k

�
C
−1

= C

�
0r 0

0 (DJ − I)

��
0r 0

0 (DJ )k

�
C
−1

= (P − I)P̃
k

. (25)

Substituting (25) in (17) we have

KΔx(n) = Kw+(P−I)

�
n−1�
k=0

P̃
k
Kw (P̃

T
)k

	
(P−I)T . (26)

4Note that P̃ has eigenvalues with modulus strictly less than 1.
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Now, taking the limit of (26) for n → ∞ and considering that the
sum within square brackets becomes a convergent series, since P̃

satisfies the hypothesis of Theorem 4, we get

lim
n→∞

KΔx(n) = Kw + (P − I)X(P − I)T , (27)

with

X =

∞�

k=0

P̃
k
Kw (P̃

T
)k . (28)

Moreover, due to (28) matrix P̃ can be thought as the unique solu-
tion of the following discrete-time Lyapunov equation

P̃ XP̃
T

+ Kw = X , (29)

and the theorem is proved.

Theorem 4 is a strong result, since it proves that systems like
(2) when considering the evolution of the first forward difference are
robust with respect to additive noise, and this property holds true
regardless of the noise statistics and the network topology, as long
as this last is described in terms of a graph Laplacian. The resilience
against coupling noise was already observed in [11, 12] and, in this
regard, the analysis carried out in [13, 14] when referencing [12]
holds true in the special case of undirected connected graphs.

Furthermore, Theorem 4 allows the computation of the asymp-
totic covariance matrix by means of the solution of the discrete-time
Lyapunov equation (21), and this last can be solved by efficient nu-
merical algorithms [3]. From the computational point of view it is
useful to remark that we do not need to compute the Jordan canonical
form of P in order to determine P̃ . In fact, the following result can
be proved [15]. Denote by ZR the matrix whose columns constitute
a basis for the eigenspace associated with the right eigenvectors of
P corresponding to the eigenvalue 1, and denote by ZL the corre-
sponding matrix associated with the left eigevectors. Then, matrix
P̃ can be computed through the following formula

P̃ = P −ZR(ZT
LZR)−1

Z
T
L . (30)

Moreover,ZR andZL can be easily determined since their columns
constitute a basis5 forN (P − I) andN (P T − I) respectively.

4. SIMULATION RESULTS AND CONCLUSION

As an illustrative example, we have considered a network composed
of 25 nodes characterized by a directed graph G (randomly gen-
erated) whose Laplacian has the zero eigenvalue with multiplicity
3. As a result, in the decomposition (4) there are three irreducible
Laplacian matrices, namely L1, L2, L3, which correspond to three
strongly connected components of G. In this case, these last are
composed of 3, 5, and 7 nodes respectively, as it is evident from
Figure 1(a). We have considered the model (2) with b = x0 =
[1· · ·3 , 5· · ·9 , 11· · ·17 , 19· · ·28]T , affected by Gaussian noise hav-
ing covariance matrix σ2

wI , with σ2
w = 5× 10−3. From Figure 1(a)

we see that nodes belonging to the three strongly connected compo-
nents (solid lines) achieve consensus independently, and each con-
sensus value is a convex combination of the corresponding entries
in b, whereas the remaining nodes (dashed lines) converge to values
that depend on matricesA andR in (4). From Figure 1(b), we have
a confirmation of the results of our theoretical analysis. The vari-
ances of the noise affecting Δx(n) remain bounded as n increases,

5N (·) denotes the nullspace.
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Fig. 1. Sensor network composed of 25 nodes with a digraph whose Lapla-
cian has the zero eigenvalue with multiplicity 3.

and the asymptotic values are the ones predicted by (20). The spread
of the variance values, in this case, is of the order of 12% of σ2

w and
interestingly the lower values pertain to the nodes belonging to the
three strongly connected components (solid lines).

In this work, we carried out an in-depth analysis of the effect
of additive noise on consensus algorithms. We proved that the noise
affecting the system state variables has a variance that grows linearly
with the time index, thus making consensus algorithms on the state
variables catastrophically sensitive even to very low noise. Con-
versely, the corresponding algorithms on the first difference of the
state exhibit a favorable resilience to noise, which makes them suit-
able for practical applications. Finally, it is worth noting that all
our results hold true regardless of the noise statistics and for arbi-
trary network topology, as long as it is described in terms of a graph
Laplacian.

5. REFERENCES

[1] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1994.

[2] P. Lancaster, M. Tismenetsky, The Theory of Matrices, Academic Press, 2nd Ed.,
1985.

[3] D. Kressner, “Block variants of Hammarling’s method for solving Lyapunov
equations”, to appear in ACM Trans. Math. Software, 34(1), 2008.

[4] J. N. Tsitsiklis, D. P. Bertsekas, M. Athans, “Distributed asynchronous determin-
istic and stochastic gradient optimization algorithms,” IEEE Trans. on Automatic
Control, pp. 803-812, Sep. 1986.

[5] D. P Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Nu-
merical Methods, Athena Scientific, 1989.

[6] R. Olfati-Saber, and R. M. Murray, “Consensus Problems in Networks of Agents
with Switching Topology and Time-Delays,” IEEE Trans. on Automatic Control,
vol. 49, pp. 1520-1533, Sep., 2004.

[7] R. Olfati-Saber, J. A. Fax, R. M. Murray, “Consensus and cooperation in net-
worked multi-agent systems,” Proc. of the IEEE, vol. 95, no. 1, pp. 215-233, Jan.
2007.

[8] W. Ren, R. W. Beard, and E. M. Atkins, “Information Consensus in Multivehicle
Cooperative Control: Collective Group Behavior Through Local Interaction,”
IEEE Control Systems Mag., vol. 27, no. 2, pp. 71-82, April 2007.

[9] V. Chellaboina, W. M. Haddad, Q. Hui, and J. Ramakrishnan, “On System State
Equipartitioning and Semistability in Network Dynamical Systems with Arbi-
trary Time-Delays,”Proc. of CDC 2006, Dec. 13-15, 2006.

[10] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed Average Consensus with Least-
Mean-Square Deviation,” Journal of Parallel and Distributed Computing, vol.
67, no. 1, pp. 33-46, Jan. 2007.

[11] S. Barbarossa and G. Scutari, “Bio-inspired Sensor Network Design: Distrib-
uted Decision Through Self-synchronization,” IEEE Signal Processing Maga-
zine, vol. 24, no. 3, pp. 26-35, May 2007.

[12] G. Scutari, S. Barbarossa, and L. Pescosolido, “Distributed Decision Through
Self-Synchronizing Sensor Networks in the Presence of Propagation Delays and
Nonreciprocal Channels,”to appear in IEEE Trans. on Signal Processing. Avail-
able at http://arxiv.org/abs/0709.2410.

[13] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus Based Distrib-
uted Parameter Estimation in Ad Hoc Wireless Sensor Networks with Noisy
Links,”Proc. of ICASSP 2007, April 15-20, 2007.

[14] I. D. Schizas, A. Ribeiro and G. B. Giannakis, “Consensus in Ad Hoc WSNs
with Noisy Links - Part I: Distributed Estimation of Deterministic Signals,” to
appear in IEEE Trans. on Signal Processing, 2007.

[15] A. Fasano and G. Scutari, “The Effect of Additive Noise on Consensus Achieve-
ment in Wireless Sensor Networks,” in preparation.

2280


