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ABSTRACT
We propose a scheme for rate-constrained distributed non-
parametric regression using a wireless sensor network. The
scheme is universal across a wide range of sensor noise
models, including unbounded and nonadditive noise; it has
low complexity, requiring simple operations such as uniform
scalar quantization with dither and message passing between
neighboring nodes in the network; and attains minimax op-
timality for regression functions in common smoothness
classes. We present theoretical results on the trade-off be-
tween the compression rate and the MSE and demonstrate
empirical performance of the scheme using simulations.

Index Terms— Sensor networks, nonparametric estima-
tion, rate-distortion theory, message-passing algorithms

1. INTRODUCTION

Consider the problem of distributed estimation using a wire-
less sensor network. To save power, we should limit the
amount of communication between the sensors and the fusion
center by having the sensors quantize their measurements.
The fusion center will use quantized data to learn the model
of the phenomenon being sensed. In this paper, we adopt the
minimum-mean-squared-error (MMSE) framework, where
the MMSE estimator of the sensor’s measurement from its
location is given by the regression function, i.e., the condi-
tional mean. It is often useful to model complex phenomena
nonparametrically [1]: instead of assuming that the regres-
sion function is described by a fixed number of parameters,
we suppose that it lies in some infinite-dimensional class
of functions. Clearly, there is a trade-off between the com-
pression rate and the achievable MSE. This paper proposes a
scheme for rate-constrained distributed nonparametric regres-
sion using a wireless sensor network with randomly deployed
sensors, which has the following attractive characteristics:
• Universality: very minimal assumptions are made on the
joint distribution of sensor location and (noisy) measurement.
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bana, IL. Support provided by the Beckman Foundation Fellowship to M.R.
and by the DARPA ITMANET program via US Army RDECOM contract
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• Low complexity: the compression involves standard opera-
tions such as uniform quantization, as well as simple message
passing between neighboring sensors.
• Minimax optimality: the estimation procedure achieves
minimax rates of convergence for certain broad classes of re-
gression functions.
We give information-theoretic bounds on the average

number of bits transmitted by the network to the fusion cen-
ter, and estimate the rate at which the MSE converges to zero
as the network gets denser. Our scheme has some common
elements with recent work of Wang and Ishwar [8] on non-
parametric distributed estimation using binary noisy sensors.
However, they assume that the sensors are dispersed through-
out the observation domain uniformly at random, and that the
measurements are bounded and corrupted by bounded addi-
tive noise. By contrast, we can handle nonuniformly deployed
sensors, as well as unbounded and nonadditive noise.

2. PROBLEM STATEMENT

The network consists of n sensors deployed over a compact
spatial domain X according to a fixed and known probabil-
ity distribution PX . Their measurements lie in some Y ⊆ R,
and there is uncertainty concerning the conditional distribu-
tion PY |X of the measurement given location. The signal-
plus-noise model Y = f(X) + Z , where f is an unknown
deterministic function andZ is zero-mean and independent of
X , is a special case of this set-up. Let PXY denote the joint
distribution of the location and the measurement of a sensor.
LetX = {Xi}n

i=1, Y = {Yi}n
i=1 be the sensor locations

and their measurements, where (X1, Y1), . . . , (Xn, Yn) are n
i.i.d. samples from PXY . We assume that the network and
the fusion center share an n-tuple U = {Ui}n

i=1 of i.i.d. ran-
dom variables (the dither signals), e.g., by using synchronized
pseudorandom number generators, where Ui is held by the
ith sensor, and that the fusion center knows X . We also as-
sume that each sensor knows its own locationXi (see, e.g., [7]
on self-localization in sensor networks) and can send analog
(continuous-valued) messages to neighboring sensors and bi-
nary messages of arbitrary length to the fusion center.
We assume the regression function η(x) = E{Y |X = x}

is in L2(X , PX). We think of η(x) as the MMSE estimator
of the measurement of a sensor placed at X = x. The task
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Fig. 1. The overall architecture of the scheme (top) and infor-
mation flow in sequential universal entropy coding (bottom).

of the fusion center is to estimate (or to learn) η fromX and
a compressed version of Y . The sensors must collaborate to
produce a binary encoding B of Y , and they are allowed to
useX andU as side information: B = en(X , Y , U), where
en is an encoding function. The fusion center receivesB and
uses its knowledge ofX andU to compute the reconstruction
ofY as Ŷ = dn(X, B, U), where dn is a decoding function.
It then estimates η by f̂n = f̂n(X, Ŷ ) ∈ L2(X , PX).
We are interested in the average number of bits transmit-

ted by the network to the fusion center and in the MSE of the
estimator,MSE(f̂n, η) = E

{ ∫
X

(
f̂n(x) − η(x)

)2
d PX(x)

}
,

where the expectation is with respect toX , Y , andU .

3. DESCRIPTION OF THE SCHEME

Here is the main idea: Let ε > 0 be chosen in advance and re-
vealed both to the network and to the fusion center. The dither
U = {Ui}n

i=1 is an i.i.d. sequence drawn from the uniform
distribution on [−√

3ε,
√

3ε] independently ofX and Y . En-
coding consists of randomized uniform quantization of sensor
measurements using step size 2

√
3ε, followed by sequential

universal entropy coding of the quantizer indices. This step
is a distributed implementation of the universal quantization
scheme of Ziv [11, 10] and has low communication complex-
ity, measured by the number of analog messages exchanged
among the sensors. Once the fusion center decodes the in-
dices, it estimates the regression function using a universal
orthogonal series estimator [1]. As we shall see, the use of
random dither is crucial both for compression and for estima-
tion. The overall architecture is displayed in Fig. 1 (top).

3.1. Encoding and decoding
For each i = 1, 2, . . . , n, define Mi = Eε(Yi + Ui) and
Ŷi = Dε(Mi) − Ui, where Eε(y) = �(y +

√
3ε)/2

√
3ε�

and Dε(m) = 2m
√

3ε. Note that Qε = Dε ◦ Eε is a uni-
form quantizer with step size 2

√
3ε. The mapping Yi �→ Ŷi is

known as uniform quantization with additive dither [10]. For
1 ≤ i ≤ n, the ith sensor computes Mi, then transmits its
lossless binary encoding Bi to the fusion center. The latter
receives theBi’s, decodesM , and computes the Ŷi’s.

To produce a good encoding ofM (i.e., at an average bit
rate ≈ H(M |X, U)) without knowing the joint distribution
of (M, X, U), we use a universal scheme based on sequen-
tial probability assignment [6]. For a distributed implemen-
tation, some message passing among the sensors is required,
for a total of O(n log n) messages. Letm = {mi}n

i=1, x =
{xi}n

i=1, and u = {ui}n
i=1 denote the realizations ofM , X

and U . First, the sensors exchange messages to find m =
min mi andm = maxmi. Assuming the ith sensor can send
messages to sensors (i − 1) mod n and (i + 1) mod n, m
and m can each be found after no more than 8(n + n log n)
message passes [3]. Let N = m − m + 1. A designated
sensor (say, the nth) then uses a universal encoding of the
integers [2] to communicate the values ofm andN to the fu-
sion center. Assume, without loss of generality, that m = 1.
Then 1 ≤ mi ≤ N for all i. Cover X by N disjoint cubes
C1, . . . , CN and carve [−√

3ε,
√

3ε] into N disjoint subinter-
vals I1, . . . , IN . For 1 ≤ i ≤ n, let li = l if xi ∈ Cl and
ki = k if ui ∈ Ik (we motivate this discretization procedure
later). For 1 ≤ i ≤ n, let si = (li, ki) and define

P̂ (i)(m|mi−1, si) =
P̂

(i)
KT (m, si|mi−1, si−1)∑N

m=1 P̂
(i)
KT (m, si|mi−1, si−1)

(1)

for allm. P̂ (i)
KT is the Krichesvky–Trofimov (KT) estimator [4]

P̂
(i)
KT (m, s|mi−1, si−1) =

ν(m, s|mi−1, si−1) + 1/2

i − 1 + N3/2
, (2)

where ν(m, s|mi−1, si−1) is the number of times (m, s) oc-
curs in (m1, s1), . . . , (mi−1, si−1). Note that P̂

(1)
KT (m, s) =

1/N3, ∀(m, s), For 1 ≤ i ≤ n, the ith sensor uses a Huffman
code to encode mi using − log P̂ (i)(mi|mi−1, si) bits. The
decoding is done sequentially: having decodedmi−1, the fu-
sion center usesmi−1 and si to compute P̂ (i)(·|mi−1, si) and
generate the right codebook.
In order not to force each sensor to aggregate data from

all the downstream sensors, we use the following message
passing scheme. From (2) it follows that for 1 ≤ i < n

P̂
(i+1)
KT can be computed recursively from P̂

(i)
KT . Therefore,

for 1 ≤ i < n − 1, let sensor i compute P̂
(i+1)
KT (m, s|mi, si)

for all m, s and pass these N3 values to sensor i + 1. Sensor
i+1 computes theN probabilities P̂ (i+1)(·|mi, si+1) via (1),
designs a Huffman code for Mi given (M i−1, Si), and en-
codesmi. The message passing is shown in Fig. 1 (bottom):
horizontal arrows correspond to analog messages exchanged
among the sensors, while vertical arrows depict outgoing bi-
nary messages. This requires n − 1 message passes if the
transmission of the N3 values of the KT estimator from one
sensor to another is counted as a single (analog) message. The
combined communication complexity of computingm andm
and the encoding ofm is thus O(n log n).

3.2. Estimation of the regression function
Let Φ = {ϕj}∞j=0 be an orthonormal basis in L2(X , PX).
Since η ∈ L2(X , PX), we can expand it in a Fourier series
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η(x) =
∞∑

j=0

θjϕj(x) with θj =
∫
X

ϕjηd PX . Now we con-

struct our estimator. Define C(J) = max
0≤j≤J

sup
x∈X

|ϕj(x)|2 for
all J and choose an increasing sequence {Jn}∞n=1 of nonneg-
ative reals (the cutoffs) satisfying the condition

C(Jn)Jn/n → 0 as n → ∞. (3)

It is satisfied, for example, by uniformly bounded bases or by
wavelet bases. For every 0 ≤ j ≤ Jn, estimate θj by θ̂j =

n−1
∑n

i=1 ϕj(Xi)Ŷi and then form the projection estimate

f̂n(x) =

Jn∑
j=0

θ̂jϕj(x). (4)

The above choice of {Jn} may lead to overfitting. To
avoid this, we suggest an alternative, data-driven procedure
for cutoff selection via empirical risk minimization [1]. Let
{Jn} satisfy (3). Then the fusion center can select the cutoff

Ĵ∗
n = arg min

0≤J≤Jn

J∑
j=0

(
2n−1V̂n,j − θ̂2

j

)
, (5)

where
V̂n,j =

1

n − 1

n∑
i=1

(
ϕj(Xi)Ŷi − θ̂j

)2

is an unbiased estimator of Var{ϕj(X)Ŷ }. Derivation is
omitted for lack of space. We found that this adaptive rule
leads to better empirical performance compared to simply us-
ing {Jn}; see Section 5.

4. PERFORMANCE ANALYSIS

We first analyze the encoding and decoding performance un-
der the assumption thatm, m � n. This holds, e.g., when the
distribution of Y has light tails, so quantizer indices with large
absolute values are unlikely, or when low-resolution quantiz-
ers are used. Then the O(log N) overhead due to sending m
and N to the fusion center is negligible, and we can focus
on the average number of bits needed to encode M . Using
properties of the KT estimator [4], we can prove that

n−1
E

{ n∑
i=1

− log P̂ (i)(Mi|M i−1, Si)
∣∣∣N}

≤ H(M |L, K) + O
(
N3n−1 log n

)
. (6)

We now motivate our method for discretizingX and U . We
would likeH(M |L, K) ≈ H(M |X, U). Given arbitrary par-
titions {Ll}L

l=1 of X and {Kk}K
k=1 of [−

√
3ε,

√
3ε], for each

i let Li = l if Xi ∈ Ll and Ki = k if Ui ∈ Kk. This will
replace N3 in (2) and (6) with NLK . Choosing L, K � N
will give a good approximation of H(M |X, U) but result in
a large excess codelength, while choosing L, K � N will
keep the excess codelength low but result in a poor approxi-
mation of H(M |X, U). This is akin to the trade-off between
the estimation and the approximation errors in statistical in-
ference. A good compromise is to let L = K = N . For

Fig. 2. Original function (left) and reconstruction (right) us-
ing adaptive cutoffs (ε = 0.2, n = 1000). The dots show
sensor locations.

large n, H(M |L, K) ≈ H(M |X, U) with high probabil-
ity. Now, the results of [11, 10] are easily extended to cover
the case of additional side information X , giving the bound
H(M |X, U) ≤ RY |X(ε) + 0.754, where RY |X is the con-
ditional rate-distortion function of Y given X [9]. The dis-
cretization is heuristic, but, as we show in Section 5, it leads
to empirical performance close to our bound onH(M |X, U).
Next, we show that f̂n converges to the regression func-

tion η in the mean square sense and that quantization does not
affect the rate of convergence. The key here is in the perfor-
mance of the Fourier coefficient estimator θ̂j . Namely, for any
j, θ̂j is an unbiased and efficient estimator of θj : E{θ̂j} = θj

and E{(θ̂j − θj)
2} ≤ C(j)(σ2

Y + ε)n−1. This follows from
the properties of dithered uniform quantizers. Using this, we
can show that the projection estimator (4) satisfies

MSE(f̂n, η) ≤ (Jn + 1)C(Jn)(σ2
Y + ε)n−1 + Δ(Jn), (7)

whereΔ(Jn) → 0 as Jn → ∞, and hence f̂n converges to η
in the mean square sense. The only effect of quantization is to
add ε to the numerator in the right-hand side of (7). That is,
quantization does not affect rate at which the MSE converges
to zero. Therefore, provided that n is sufficiently large (i.e.,
the network is sufficiently dense), communication resources
can be saved by using very coarse quantizers. In fact, in our
simulations we found that the degradation of the MSE due
to quantization is not very significant (see Section 5), which
makes our scheme suitable for low-rate operation.
Finally, we show that the projection estimator f̂n is min-

imax optimal for the additive Gaussian noise model Y =
f(X) + Z , where Z ∼ Normal(0, σ2) is independent of X ,
and where sensors are deployed uniformly at random in the
unit cube [0, 1]d. Here, η = f . We consider two commonly
used function classes, namely analytic and Lipschitz.
Analytic functions: Suppose f belongs to the class Aγ,M ,
where M > 0 and γ = (γ1, . . . , γd) with each γl > 0,
which consists of all functions h : Rd → R that are 1-periodic
in each of their arguments and can be analytically continued
from Rd to Sγ = {z ∈ Cd : |Im zl| < γl, l = 1, . . . , d} in
such a way that |h| ≤ M on Sγ . Choosing the tensor-product
basis built from the trigonometric basis inL2([0, 1]) and Jn =

�(γ1 . . . γd)
−1(lnn)d�, we get MSE(f̂n, f) ≤ C(lnn)d/n,

where C depends only on γ, M, σ2, ε. On the other hand, it
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Fig. 3. Simulation results: average bits per sensor vs. ε (left); MSE vs. ε with adaptive cutoff selection (middle); MSE vs. ε
with smoothness-based cutoff selection (right). The network sizes are n = 100, 500, 1000.

can be shown [5] that

inf
f̃n

sup
f∈Aγ,M

MSE(f̃n, f) � C1(ln n)d/n.

Lipschitz functions: Suppose f belongs to the class Lipr,α,M

for some M > 0, r ∈ {0, 1, 2, . . .} and α ∈ (0, 1], which
consists of all bounded, 1-periodic functions h : R → R

satisfying |h(r)(x + y) − h(r)(x)| ≤ M |y|α for all x, y ∈ R,
where h(r) is the rth derivative of h. Again, choosing the
trigonometric tensor-product basis and Jn = �n1/(2β+1)�,
we get MSE(f̂n, f) ≤ Cn−2β/(2β+1), where C depends
only on r, α, M, ε. On the other hand, we have [1]

inf
f̃n

sup
f∈Lipr,α,M

MSE(f̃n, f) � C2n
−2β/(2β+1).

In both cases, the infimum is over all estimators of f from n
samples. Hence, f̂n is minimax.

5. EXPERIMENTS

We have tested the performance of our scheme on the ad-
ditive Gaussian noise model Y = f(X) + Z , where Z ∼
Normal(0, σ2) is independent of X . The underlying domain
is the unit square [0, 1]2, σ2 = 0.2, and the function f , shown
in Fig. 2, is a linear combination of a number of sinusoids and
a rapidly decaying exponential term. This function is Lips-
chitz with r = 0 and α = 1, i.e., β = 1.
We have used both a nonadaptive and an adaptive ap-

proach to estimate f . For the former, the smoothness constant
β = 1 was used to determine the cutoffs Jn, while for the lat-
ter the cutoffs were selected using (5). Simulation results are
shown in Fig. 3. As Fig. 3 (left) illustrates, for a given value
of ε the average number of bits per sensor is above the con-
ditional rate distortion function of Y given X evaluated at ε
plus 0.754 bits (i.e., Ziv’s bound with side information), but
the gap closes as we increase the number of sensors. More-
over, the degradation of the MSE due to quantization is not
very significant (the curves in Fig. 3, middle and right, are
essentially flat). This makes the proposed scheme attractive
for situations that call for low communication rates, since we
can use low-resolution quantizers in dense networks. We also
find that the adaptive procedure for determining cutoffs does
significantly better than its nonadaptive, smoothness-based
counterpart, especially for network sizes n = 500 (adaptive
MSE ≈ 0.3 vs. nonadaptive MSE ≈ 0.72) and n = 1000
(adaptive MSE ≈ 0.2 vs. nonadaptive MSE ≈ 0.65).

6. CONCLUSION

This paper has proposed a scheme for rate-constrained dis-
tributed nonparametric regression which is low-complexity,
universal, and minimax optimal for commonly used smooth-
ness classes. One particularly attractive feature is that it can
support very low communication rates yet still remain mini-
max optimal. Our simulations show that its empirical perfor-
mance is close to that predicted by the theory, and confirm the
theoretical conclusion that, for sufficiently dense networks,
the effect of quantization on the MSE is not very significant.
Random dithering is crucial not only for universal quantiza-
tion, but also for obtaining unbiased and efficient estimators
of the Fourier coefficients of the regression function.
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