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ABSTRACT

In most sensor network applications, the vector containing the ob-
servations gathered by the sensors lies in a space of dimension equal
to the number of nodes, typically because of observation noise, even
though the useful signal belongs to a subspace of much smaller di-
mension. This motivates smoothing or rank reduction. We formulate
a convex optimization problem, where we incorporate a fidelity con-
straint that prevents the final smoothed estimate from diverging too
far from the observations. This leads to a distributed algorithm in
which nodes exchange updates only with neighboring nodes. We
show that the widely studied consensus algorithm is indeed only a
very specific case of our more general formulation. Finally, we study
the convergence rate and propose some approaches to maximize it.

Index Terms— Distributed smoothing, consensus algorithm,
sensor networks.

1. INTRODUCTION

In this paper we consider a wireless sensor network that monitors a
field of values, e.g., a field of temperatures or the concentration of
a given contaminant. In most cases, the useful signal is a smoothed
function, as a result of a diffusion process. However, typically the
set of measurements is not at all smoothed because of the observa-
tion noise. This motivates the design of sensor networks that are able
to apply some kind of filtering or smoothing to the data, in order to
limit the influence of noise on the final decision. If possible, it would
be important to implement these filtering operations in a distributed
way, i.e. without the presence of a sink node that has to collect all
the data to apply the required filtering operation. This problem has
been studied extensively in the case where the useful signal is ho-
mogeneous, that is spatially constant. In such a case, the so called
consensus algorithms are able to provide the globally optimal es-
timate with a network of only locally interacting sensors, see e.g.,
[1], [2]. Another problem that has received significant attention has
been the so called distributed Kalman filtering algorithm, see, e.g.
[3], [4], where the goal is to track a non-stationary process, typically
modeled as a Gauss-Markov field.

Conversely, the goal of this work is to provide a distributed
mechanism to perform a spatial smoothing of a stationary, inhomo-
geneous field. Furthermore, we incorporate a fidelity constraint in
the optimization process to prevent the the final estimate from di-
verging too far from the observations. In particular, we show that if
the useful signal is a continuous function, i.e., it can be locally ap-
proximated by a low order polynomial expansion, then the smooth-
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ing operation can be implemented with a totally distributed network
where each node is linked only to a set of neighbors, with the degree
of each node depending only on the degree of the approximating
polynomial. Then we generalize the algorithm to handle the case of
discontinuous functions. As expected, we will show that the well
known consensus algorithm can be seen as a particular case of our
more general formulation.

The paper is organized as follows. In Section 2, we formulate
the problem and motivate its usefulness. In Section 3, we propose a
spatial smoothing mechanism with no fidelity constraint. In Section
4, we add the fidelity constraint. Finally, in Section 5, we show how
to maximize the convergence rate.

2. MOTIVATIONS AND PROBLEM STATEMENT

We consider a sensor network composed ofN nodes, each equipped
with three basic components:i) a transducer that senses the physical
parameter of interest; ii) a discrete dynamical system whose state
is initialized with the local measurements; iii) a radio interface that
transmits the state of the dynamical system and receives the state
transmitted by the other nodes, thus ensuring interaction among the
nodes. The observation of the sensor located at (xi, yi) is

g(xi, yi) = f(xi, yi) + w(xi, yi), i = 1, ..., N (1)

where f(xi, yi) is the useful field and w(xi, yi) is noise. In vector
notation, we may write g = f + w, with the three vectors hav-
ing dimension N . For simplicity, we assume that the nodes are
uniformly spaced over a 2-dimensional grid and that the observed
field does not vary with time. However, the extension to the more
general case can be done in a straightforward manner. Our goal is
to provide a smoothed version f̂(x, y) of the useful field f(x, y),
in order to attenuate as much as possible the effect of noise, using
a totally distributed algorithm. If the useful signal is constant, its
value can be obtained, for example, with the well known average
consensus (AC) algorithm, which is totally distributed. The AC al-
gorithm proceeds as follows. Every node initializes its own state
value zi(0) = g(xi, yi) and then it updates this value through linear
interactions with other nodes according to the following equation

zi(k + 1) = zi(k) + ε
�

j∈Ni

aij(zj(k)− zi(k)), (2)

where Ni is the set of neighbors of node i, the coefficients aij are
real and non-negative (aii = 0), and k is the time or iteration in-
dex. Although synchronous updates are assumed here, these results
extend to the asynchronous case, and to stationary node and link
failure models easily. Equation (2) can be recast in matrix form as
[1]

z(k + 1) = (I − εL)z(k), (3)
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where L = D − A is the graph Laplacian, A is the adjacency
matrix, with entries the coefficients aij , andD is the degree matrix,
i.e. a diagonal matrix whose i-th entry is di =

�
j∈Ni

aij . For the
purpose of this work, the matrix A (and then L) may be assumed
to be a symmetric matrix. Let λN (L) denote the largest eigenvalue
of L. It is straightforward to show (see, e.g. [1]) that, if 0 < ε <
2/λN (L) and the graph describing the network is connected and
balanced, then the vector z(k) converges to the average consensus,
i.e.,

lim
k→∞

z(k) =
1

N
11

T
g, (4)

where 1 is the vector with all ones.
This algorithm is totally decentralized, but it represents an

extreme form of smoothing, as it destroys any potential spatial
variation in the field of interest, which in most cases is spatially
inhomogeneous. The goal of this paper is to propose an algorithm
to smooth the observation, using a totally distributed approach, but
without forcing the final result to converge to a constant value.
We formulate our problem as an optimization problem with a fi-
delity constraint. Formally, we want to find the estimated field
f̂ := (f̂(x1, y1), . . . , f̂(xN , yN )) as the minimizer of the functional

J (̂f) = μ V (̂f) + (1− μ)‖̂f− g‖2, (5)

where V (̂f) is a convex function measuring the smoothness of f̂, the
term ‖̂f− g‖2 measures the distance between the final estimate and
the initial observation g, and μ is a real parameter lying between 0
and 1. By varying μ, we vary the relative importance of smoothing
versus that of fidelity to the initial measurement. Since J (̂f) is a con-
vex function of f̂, the minimization of J (̂f) admits a unique solution.
What is critical in our approach is that the minimization of (5) has
to be achieved using a network with no fusion center, whose nodes
exchange information only with its neighbors. This is useful to sim-
plify the operations at each node and, most important, to limit the
waste of energy related to the exchange of data among sensors. We
will consider first the case of pure smoothing (no fidelity constraint).
Then, we will add the fidelity constraint.

3. SPATIAL SMOOTHINGWITH NO FIDELITY
CONSTRAINT

If the useful field f(x, y) is a continuous function of the spatial co-
ordinates, according to the Weierstrass’ theorem it can be approxi-
mated by a two-dimensional polynomial of finite order in the vari-
ables x and y, with an arbitrarily small error. Let us denote with K
the order of the polynomial in both variables x and y. In such a case,
we want to minimize the following function

V (g) =
1

2

�
i∈N

K�
m=0

[∇(K−m)
x ∇(m)

y g(xi, yi)]
2, (6)

where ∇(m)
x and ∇(m)

y denote the m−th order difference operator
with respect to the variables x and y, respectively. More specifically,
the operator is defined through the following properties:

∇(0)
x g(xi, yi) = g(xi, yi); ∇

(0)
y g(xi, yi) = g(xi, yi);

∇(1)
x g(xi, yi) = g(xi, yi)− g(xi−1, yi);

∇(1)
y g(xi, yi) = g(xi, yi)− g(xi, yi−1)

∇(n)
x g(xi, yi) = ∇(1)

x

�
∇(n−1)

x g(xi, yi)
�
; ...

(7)

To take into account border effects,N is the set of indices for which
the above differences can be properly computed; also recall that we
have assumed a uniform 2D grid for simplicity of exposition. Since
(6) is a quadratic form on g, its minimum can be reached using the
steepest descent method

z(k + 1) = z(k)− εLz(k) � W z(k), (8)

with initialization z(0) = g, having setW � I−εL. It is useful to
remark that, by construction L is a positive semidefinite, symmetric,
band matrix. Hence, there exists a unitary matrix U and a diagonal
matrix Λ with real elements such that:

L =
�
U1 U2

�� Λ1 0
0 0

��
UH

1

UH
2

�
(9)

where U2 has dimension N × L, with L denoting the dimension of
the kernel of L. The columns of U2 are the vectors spanning the
kernel of L. Let λi(L) and λi(W) denote the eigenvalues of L and
W ; we assume that these eigenvalues are ordered in non-decreasing
order. We can always choose ε, so that the eigenvalues ofW satisfy
0 < |λi(W)| < 1, ∀1. This property is clearly achieved by setting

0 < ε <
2

λN (L)
. (10)

With this choice, it is straightforward to verify that

lim
k→∞

z(k) = lim
k→∞

N�
i=1

λk
i (W)uiu∗i z(0) = U2UH

2 z(0), (11)

where the columns ofU 2 are exactly the vectors spanning the kernel
of L. Hence, expression (11) states that the final value coincides
with the projection of the observation vector onto the nullspace
of L. This is an important property that significantly enlarges the
possibility of smoothing or, more generally, subspace reduction of
the observation, by a proper construction of the matrix L. Some
examples may be helpful to grasp the structural properties of L and,
as a consequence, the final value.

Let us consider the one-dimensional case, for simplicity of notation.
In such a case, we have, for example:

a)K = 1,

L =

	











�

1 −1 0 0 . . . 0

−1 2 −1
. . .

. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . −1 2 −1

0 . . . . . . 0 −1 1

�
������������

In this case, the role of L is the same as the Laplacian matrix in
(3), where aij = 1, if |i − j| = 1, and 0 otherwise. This happens
when each node has only two neighbors (except the border nodes
having only one neighbor). The matrix L has, in this case, a null
eigenvalue of multiplicity one. Since each row of L has zero row
sum, the eigenvector associated with the null eigenvalue of L is the
vector 1 composed of all ones. Hence, the final result is as in (4), as
in the conventional average consensus algorithm.
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b)K = 2,

L =

�
������������������

1 −2 1 0 0 0 . . . 0

−2 5 −4
. . .

. . .
. . .

. . . 0

1 −4 6
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . . 6 −4 1

...
. . .

. . .
. . .

. . . −4 5 −2
0 . . . . . . . . . 0 1 −2 1

�
������������������

In this case, the nullspace of L has dimensionality two and it is
spanned by a linear combinations of polynomials of degree zero and
one. An orthonormal set is given, in this case, by the Legendre poly-
nomials of degree zero and one. Hence the final vector is a straight
line. In general, it is easy to check that, given the structure of the
cost function V (g) in (6), the nullspace of L has dimensionality K
and it is spanned by the polynomials of orders from 0 to K − 1.
Since any continuous function can be approximated with an arbitrar-
ily small error, by a polynomial, the above method provides then a
distributed tool to approximate any continuous field of values. The
network degree corresponding to a given value ofK is simply 2K.

An example of the application of the previous method to a 2D
field is reported in Fig. 1. In this case, the useful field is a paraboloid
and the measurement is corrupted by zero mean white Gaussian
noise. The observations are represented, in Fig. 1, by the circles.
The final state vector is represented by the paraboloid shown in Fig.
1, which is almost perfectly superimposed on the useful field.
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Fig. 1. Reconstruction of a 2D field.

4. SPATIAL SMOOTHINGWITH FIDELITY CONSTRAINT

In principle, we can improve the approximation in the above method
by increasing the value of K. However, the degree of the network,
defined as the maximum number of neighbors of each node, in-
creases with K. This induces a greater waste of energy. Hence, it
is necessary to find the right trade-off between energy consumption
and approximation error. Furthermore, if the useful field presents
discontinuities, we could be forced to use very high values ofK and

still have a nonnegligible error. It is then useful to devise some vari-
ants of the previous method that still allow us to have a limited value
of the network degree. To this end, we use now as cost function the
expression (5), with V (g) given in (6), with μ ∈ (0, 1). In this case,
the steepest descent method leads to

z(k + 1) = [(1− ε(1− μ))I − εμL ]z(k) + ε(1− λ) z(0), (12)

with z(0) = g. Introducing the matrix W � (1 − ε(1 − μ))I −
εμL, we can guarantee that the eigenvalues λi(W ) ofW are strictly
between −1 and 1, by setting

0 < ε < min
i

�
2

λi(L) + 1− μ

�
=

2

λN (L) + 1− μ
. (13)

With a few simple algebraic manipulations, we can rewrite z(k) as

z(k) = W kz(0) + ε(1− μ)
	k−1

n=0W
kz(0)

= W kz(0) + ε(1− μ)(I−W)−1(I−Wk)z(k).
(14)

Choosing ε according to (13), the state vector converges to

lim
k→∞

z(k) =



I +

μ

1− μ
L

�−1

g. (15)

Depending on the value of μ, we may give different relative impor-
tance to smoothing or fidelity to the original observation. In the ex-
treme case of μ = 0, the network does not apply any smoothing, i.e.
limk→∞ z(k) = g, whereas, at the other extreme, when μ = 1, the
final value coincides with the projection of the observation onto the
nullspace of the Laplacian matrix, as proved in the previous section.

A numerical example is reported in Fig.2, relative to a one-
dimensional network located over a straight line. The observed sig-
nal in this case is a sinusoid (dashed line) and the observation (dots)
is corrupted by white Gaussian noise. The SNR is 5 dB. Smoothing
has been performed using the simple algorithm (8), with K = 3.
In this case, with μ = 1, the method projects the observed vec-
tor onto the space spanned by second order polynomials. Since the
observation is a noisy sinusoid, the final result (dash-dotted line) is
not very good. However, as soon as μ is slightly less than one, the
method is forced to take into account the fidelity to the observation,
and the final result is much better than in the previous case. Using
μ = 0.9999, for example, the result of the smoothing operation is
represented by the solid line and we can see that the approximation
is now pretty good.

Even if this is only a simple example, Fig. 2 suggests that the
choice of μ can have a strong impact on the smoothing operation.
To quantify the final distortion, we can compute the mean square
error, averaged over the noise realizations. Introducing the matrix
P (μ) =

�
I + μ

1−μ
L
−1

, the final MSE is

MSE(μ) = ‖(P (μ)− I)f‖2 + σ2
ntr(P (μ)P (μ)T ). (16)

In the case of a sinusoidal function, this function, normalized to
‖f‖2, is reported in Fig. 3, for different values of μ and σ2

n. As
expected, there is an optimal value of μ that depends on the noise
level: When there is no noise, it is better to apply no smoothing at
all, and thus the best value of μ is zero; conversely, as the noise
increases, it is better to use values of μ closer and closer to one.
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Fig. 2. Reconstruction of a noisy sinusoid.
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Fig. 3. MSE as a function of μ and σn.

5. CONVERGENCE RATE

A critical issue in most distributed processing algorithms to be im-
plemented in decentralized sensor networks is the convergence rate.
It is clear in fact that a slow convergence rate implies a waste of time
and energy. And energy is an especially critical and scarce resource.

The distributed projection method illustrated in Section 3 re-
quires only that the nullspace of the matrix L to be used for the
state update in (8) be composed of the right eigenvectors (polyno-
mials), but it does not impose any condition on the eigenvalues of
(L). Hence, we can optimize the choice of the eigenvalues in order
to maximize the convergence rate.

From (11), the convergence is exponential and the convergence
rate is given by the slowest mode, i.e. the highest eigenvalue of
W strictly less than 1. This value is λN−1(W ) = 1 − ελ2(L).
Requiring that the corresponding mode decays from 1 to α, with
α < 1, we get a convergence time

Tc =
log α

log(1− ελ2(L))
. (17)

From (17), it is clear that the minimization of the convergence time
corresponds to minimizing the second smallest eigenvalue of L. To
make a fair comparison with the method presented in Section 3,
with the matrix L resulting from the computation of the gradient
of V (g) in (6), we impose a constraint on the trace of L and look

for the optimal distribution of eigenvalues that provides the largest
λ2(L). The result is very simple: the optimal set of eigenvalues cor-
responds to having all the eigenvalues equal to each other and equal
to tr(L)/rank(L). We denote by L′ the matrix having the same
eigenvectors as L, same nullspace, but all the nonnull eigenvalues
equal to each other. The price to be paid for the use of this matrix
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Fig. 4. MSE as a function of μ and σn.

L′ is a sort of spillover effect: Whereas the matrix L resulting from
taking the gradient of V (g) in (6) is a band matrix, the matrix L′ is
not necessarily a band matrix. This means that every node in the net-
work has, in general, a higher degree and this implies a higher trans-
mit power for each node. SettingL = D−A, as in the conventional
Laplacian, we studied the spillover ratio r(K) =

�
I

a2
ij/
�

B
a2

ij ,
where B is the set of indices falling in the same band as the initial
matrix L, whereas I indicates the set of indices falling outside the
initial band. In Fig. 4, we report the ratio of the smallest eigenvalues
λ2(L

′)/λ2(L) (solid lines), denoting the increase of convergence
rate resulting from forcing all the eigenvalues to be equal to each
other, forK = 1, 2, and 3. In the same figure, we plot the spill-over
ratio r(K), also for K = 1, 2, and 3, as a function of the number
of nodes (dashed lines). We can notice how a proper allocation of
eigenvalues produces a substantial increase of the convergence rate,
more and more evident as the number of nodes increases. At the
same time, this determines a higher degree for each node, as evi-
denced by the dashed line curves, which implies a higher required
transmit power at each node. An interesting, still open question, is
then how to find out the optimal eigenvalue distribution that mini-
mizes the overall energy required for achieving the final smoothed
signal, taking into account both convergence rate and local transmit
power.
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