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ABSTRACT

In this paper we consider distributed detection in ultra-
wideband (UWB) wireless sensor networkswith asynchronous
transmissions over frequency-selective channels. Three
amplify-and-forward schemes with different requirements
on channel state information (CSI) are investigated. Perfor-
mances are studied and compared by using the large deviation
principle and simulations.

Index Terms— Distributed detection, UWB, large devia-
tion, sensor networks

1. INTRODUCTION

Distributed detection is an important application for wireless
sensor networks. In a typical distributed detection scenario,
the information of interest is collected locally by a large num-
ber of low-cost sensors. Each sensor then delivers a summary
of its own observation to a remote fusion center where the re-
ceived data are processed to decide one of several hypothesis.
In such systems, the primary issue is joint optimal design of
local transmission strategies at the sensors and a decision rule
at the fusion center, which is known to be dif cult to optimize
in general, and has been studied for more than two decades
(see [1, 2, 3]). However, most existing works ignore the ef-
fect of fading and interferences in the channel, and/or assume
transmissions from local sensors are perfectly synchronized.
Until recently, there has only been limited work on distributed
sensing under practical physical layer models ([4, 5, 6]).
Impulse-radio UWB has been considered as a promis-

ing candidate for wireless sensor networks due to its low
complexity and low cost. In this paper, we consider dis-
tributed detection with UWB as underlying physical layer in
the presence of practical power, fading and synchronization
constraints. Unlike [5], we allow for noise in the sensing
model and do not assume that all sensors agree on the same
message before transmission. A signi cant and surprising
result of distributed sensing problem is that in a Gaussian
system with AWGN channel, a simple amplify and forward
analog scheme along with coherent combining outperforms
any separate source and channel coding scheme and achieves
an asymptotically optimal scaling law [7]. This is because

that the goal of distributed sensing is to obtain some common
information instead of recovering separate data from every
sensor. Since the received signals may cancel out each other
if the channel fading is zero mean or in the presence of ran-
dom synchronization errors, the channel state information
(CSI) has to be fed back to each sensor to compensate for
the fading and synchronize the signal. However, the UWB
signal experiences a frequency-selective channel and has an
extremely narrow pulse duration. It is neither practical to
feed back full CSI to all sensors, nor synchronize at the pulse
level at the receiver.
In this paper, we study the detection performance of

UWB systems with amplify-and-forward. In particular, we
are interested in the following questions: (i) what is the
tradeoff between the detection performance and the feedback
overhead? (ii) How can the asymptotically optimal perfor-
mance be achieved under the practical limits? (iii) How is the
asymptotical optimality affected by the system bandwidth and
power? To reveal some answers for the above questions, we
investigate three schemes with different requirements on CSI,
and compare their performances using large deviation analy-
sis. We rst derive the performance of a log-likelihood ratio
detector when no CSI is available at the sensors. Then, we
show that if each sensor knows the sum of its own multipath
gain, a coherent combining scheme can achieve asymptoti-
cally optimal performance. To reduce the feedback further,
we also propose a scheme requiring only 1 bit feedback and
having a maximal error exponent with a factor of 2/π loss
compared to the best possible one.

2. SYSTEM MODEL

We study a binary hypothesis distributed detection problem.
LetH0 andH1 denote the null and alternative hypothesis with
prior probabilities P (H0) = P (H1) = 0.5. M sensors are
deployed in the event area and make independent observa-
tions Ui, for i = 1, · · · , M , in each observation period. To be
speci ed, we assume

H0: The ith sensor observes Ui = wi;

H1: The ith sensor observes Ui = θ + wi,
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where θ > 0 is a known constant and wi is i.i.d Gaussian ob-
servation noise with zero mean and variance σ2

w. Note that
our analysis below can be generalized to multiple hypothe-
sis test problems and correlated Gaussian observation noise
cases.
We consider an analog transmission strategy where each

sensor ampli es its observation and then forwards it to the
fusion center using UWB signalling. The transmitted signal
from the ith sensor is given by

si(t) =

Nf−1∑
j=0

giUic
DS
i (j)p

(
t − jTf − cTH

i (j)Tc

)
, (1)

where Tf is the frame duration; Nf is the number of frames
in one observation period; cDS

i (j) = ±1 and cTH
i (j) =

1, · · · , Lc are the pseudo-random direct sequence and time
hopping codes, respectively, in order to smooth the spectrum;
Tc is the chip duration; p(t) represents the monocycle wave-
form with pulse energy normalized to 1 and pulse duration
Tp � Tf ; and gi are the ampli cation coef cients which
must satisfy a power constraint Ptot, i.e.

M∑
i=1

E(s2
i (t)) = Nf

M∑
i=1

E(g2
i )(σ2

w + 0.5θ2) ≤ Ptot. (2)

The frequency selective channel of UWB systems is mod-
eled by a tapped-delay-line model [8]

hi(t) =

L−1∑
l=0

αliδ(t − τ0i − lTc), (3)

where L is the number of multipath components, τ0i is the
delay of the ith sensor’s rst arrival multipath, and αli is the
lth multipath gain of the ith sensor. Since the pulse duration is
ultra small and the number of sensors is large, it is unrealistic
to assume that each sensor knows τ0i so as to synchronize on
a pulse level. We assume that τ0i is unknown to all sensors
such that signals arrive at the fusion center unsynchronized.
The composite received signal at the fusion center is given by

r(t) =

M∑
i=1

L−1∑
l=0

αlisi(t − τ0i − lTc) + n(t), (4)

where n(t) is the received white Gaussian noise. The fusion
center decides on H0 or H1 based on r(t). To simplify the
analysis, we have made the following assumptions.

1. We assume Tp = Tc = 1/W , where W is the signal
bandwidth. Let N = �Tf/Tp� denotes the number of
resolvable bins in one frame, andL = �Tm/Tp�, where
Tm is multipath delay spread.

2. We assume that the differences of sensor’signal arrival
time are limited within Tf , i.e., we assume that ki :=
τ0i/Tp + cTH

i , for i = 1, · · · , M , is an integer random
number uniformly distributed within [1, N − L].

3. We assume α̂li := cDS
i αli are i.i.d Gaussian random

variables with zero mean and normalized variance 1/L.

4. Since the signals are periodic with period Tf . Without
loss of generality, we assume Nf = 1.

Under the above assumptions, the received signal can be ex-
panded by N orthogonal samples r = [r1, · · · , rN ]T , and

rj =
M∑
i=1

giUihji + nj , (5)

where T denotes matrix transpose, nj ∼ N (0, σ2
n) is i.i.d

received Gaussian noise, and hji is the effective channel co-
ef cient, given by

hji =

{
α̂(j−ki),i if ki ≤ j < ki + L;

0 otherwise. (6)

The received signal in matrix form is given by r = HX + n,
whereH = {hji}N×M , X = [g1U1, · · · , gMUM ]T and n =
[n1, · · · , nN ]T . In the following, we focus on the perfor-
mance analysis for Bayesian test, although similar results can
be generalized for Neyman-Pearson test.

3. NO CSI AT TRANSMITTERS

If sensors do not have any CSI, given the identical sensor as-
sumption, the ampli cation coef cients should be the same

g = g1 = · · · = gM =

√
Ptot

Mδ
, (7)

where δ = σ2
w + 0.5θ2. If H is known by the fusion center,

it can be easily veri ed that r is Gaussian distributed under
both hypothesis,i.e.,

H0: r ∼ N (0,Σ);

H1: r ∼ N (θgH1,Σ),

where 0 = [0, · · · , 0]TN , 1 = [1, · · · , 1]TN , and Σ =
g2σ2

wHH
T + σ2

nIN and I is identity matrix. It is well known
that the optimum detector is the log-likelihood ratio test. In
the above problem, the decision rule is

T1(r) := θgrT
Σ
−1

H1 ≷H1

H0

1

2
θ2g2

1
T
H

T
Σ
−1

H1. (8)

The decision variable T1(r) is Gaussian random variable with
E(T1(r)|H0) = 0 and E(T1(r)|H1) = var(T1(r)|H0) =
var(T1(r)|H1) = θ2g2

1
T
H

T
Σ
−1

H1. Therefore, the error
probability of the detector is given by

Pe,1 = Q

(
1

2

√
θ2g21THTΣ−1H1

)
(9)

where Q(x) =
∫∞

x
1√
2π

e−y2/2dy. Although the above
scheme does not require any feedback, the performance is
generally not optimal as observed from the numerical and
simulated results in Sec. 5, since the signals at the same bin
from different sensors may cancel out each other.

2262



4. PARTIAL CSI AT TRANSMITTERS

To achieve the optimal performance, both the sensors and
the fusion center need to fully exploit the CSI. However, for
UWB sensor networks usually with a larger number of sen-
sors and frequency selective channels, it is impractical to feed
back the full CSI to all sensors. In this section, we propose
two simple schemes which only require partial CSI at the sen-
sors.
Consider the following simple test

T2(r) :=
N∑

j=1

rj ≷H1

H0

1

2
θ

M∑
i=1

gi

L∑
l=0

α̂li. (10)

Our idea of this test is to mimic the coherent combining
method in the AWGN channel proposed in [7]. Assume H1

is true, we have

T2(r|H1) = θ
M∑
i=1

gifi +
M∑
i=1

gifiwi +
N∑

j=1

nj , (11)

where fi =
∑L

l=0 α̂li. Thus, T2(r) is Gaussian random vari-
able under both hypothesis, and the detector performance is
given by

Pe,2 = Q

⎛
⎝1

2

√√√√ (θ
∑M

i=1 gifi)2

σ2
w

∑M
i=1 g2

i f2
i + Nσ2

n

⎞
⎠ . (12)

We are interested in the asymptotical performance when M
goes to in nity. Assume that gi = g(fi) for all sensors where
g(·) is some function. Using the Cramér’s large deviation the-
orem, we have

lim
M→∞

−
log Pe,2

M
= lim

M→∞

(θ
∑M

i=1 gifi)
2

8M(σ2
w

∑M
i=1 g2

i f2
i + Nσ2

n)

= lim
M→∞

θ2E2[g(fi)fi]

8(σ2
wE[g2(fi)f2

i ] + N
M σ2

n)
, (13)

where the second equality is due to the law of large num-
bers. Since E2[g(fi)fi] ≤ E[g2(fi)f

2
i ], eq. (13) is maxi-

mized when var[g(fi)fi] = 0. Note that the ampli cation
coef cients gi have to satisfy the power constraint given by
(2). To solve this problem, let

g(f) =

{
1/f, if |f | ≥ ξ;
0, if |f | < ξ.

(14)

where ξ is the positive solution of
∫∞

ξ
1
f2 b(f)df = Ptot

2Mδ , and
b(f) denotes the probability density function of f . Let po

denote the probability of |f | ≥ ξ. This scheme requires the
fusion center to feed back fi to each sensor. We call it the
sum-feedback scheme.Substituting (14) into (13), we have

lim
M→∞

−
1

M
log Pe,2 = lim

M→∞

θ2po

8(σ2
w + N

Mpo
σ2

n)
. (15)

Note that θ2/(8σ2
w) is actually the error exponent rate when

the sensors are connected to the fusion center with a per-
fect channel. This is because, if the fusion center has the
knowledge of all Ui directly, applying the log-likelihood
ratio test to U1, · · · , UM , the error exponent is given by
θ2/(8σ2

w). Therefore, the detector T2(r) along with gi

given by (14) approaches asymptotically optimal if po →
1 and limM→∞

N
M = 0. Note that po → 1 whenever

limM→∞
Ptot

M = ∞. To get more insight, we consider
the following cases for the sum-feedback scheme.

1. If limM→∞
Ptot

M = ∞ and limM→∞
N
M = 0, the sum-

feedback scheme has the best possible error exponent.

2. If limM→∞
Ptot

M = 0 or limM→∞
N
M = ∞, the error

exponent equals to 0, indicating non-exponential, slow
error probability decay rate.

3. Otherwise, the sum-feedback scheme has a sub-optimal
error exponent.

From (15), we can see that as N increases the error exponent
decreases. Note that our proposed scheme is the counterpart
for the frequency-selective channel of the analog scheme with
coherent combining in [7]. Since N = �TfW �, this shows
that with a frequency-selective channel, the performance of
the analog scheme with coherent combining may decrease as
the bandwidth or the asynchronous interval increases.
To further reduce the overhead of the system, we propose

another scheme called the 1-bit-feedback scheme. In such a
scheme, the fusion center feeds back only 1 bit information to
each sensor, which is described as: if fi/|fi| = 1, feed back
1 to the ith sensor; otherwise, feed back 0. The ampli cation
coef cient at the ith sensor is thus given by

gi =
fi

|fi|

√
Ptot

Mδ
(16)

The decision rule is still give by (10) and the error probability
Pe,3 is characterized by (12). The error exponent is

lim
M→∞

−
1

M
log Pe,3 = lim

M→∞

θ2

4π(σ2
w + N

Ptot
σ2

nδ)
, (17)

Thus, when limM→∞
Ptot

N = ∞, the error exponent of the
1-bit-feedback scheme achieves its maximum, which has a
factor of 2/π loss compared to the optimal error exponent.
When limM→∞

Ptot

N = 0, the error exponent equals to 0.
Similarly, the performance decreases as N increases.

5. SIMULATION RESULTS AND COMPARISONS

In this section, we compare the above three schemes using
numerical methods and simulations. The parameters we use
are: L = 10, θ = 1, σ2

w = σ2
n = 1. Fig. 1 shows the

probabilities of error of the three schemes as a function of
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Fig. 1. Performance comparison when N = 20, Ptot/M =
10.
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Fig. 2. Performance comparison whenN/M = 1, Ptot/M =
10.

M whenN is xed to 20 and Ptot increases linearly withM .
Note that the Y axis of the gure is in logarithm scale. It can
be seen that as M becomes large, the probabilities of error
decease very fast for the two feedback schemes. However,
since N is xed, the no-feedback scheme decreases slowly
due to sensors cancelling each other’s signal. Fig. 2 compares
the performances when both N and Ptot increase linearly
with M . In this case, the no-feedback scheme achieves ex-
ponentially decreasing rate and outperforms the two feedback
schemes. This is because asN increases withM , the pseudo-
random time-hopping code and direct sequence alongwith the
asynchronous transmission enable orthogonal multiple access
for the no-feedback scheme. It is noticeable that the sum-
feedback scheme outperforms the 1-bit-feedback scheme only
whenM is very large andN is xed. Considering the impact
of feedback overhead in large networks, the 1-bit-feedback
scheme is suggested over the sum-feedback scheme.

6. CONCLUSIONS

We investigate three amplify-and-forward schemes with dif-
ferent CSI requirements for distributed detection in UWB
wireless sensor networks. If no CSI is available at the sen-
sors, the best detector can only achieve an exponential error
decay rate when both the total power and the time-bandwidth
product increase linearly with the number of users. If each
sensor knows the sum of its own multipath gain, a coherent
combining scheme is proposed to achieve asymptotically op-
timal performance. To reduce the feedback further, a scheme
requiring only 1 bit feedback is also proposed, and it is shown
that its maximal error exponent has only a factor of 2/π loss
compared to the best possible one. We also reveal that for
the coherent combining approach such as the two feedback
schemes, the performance generally deteriorates as the time-
bandwidth product increases.
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