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ABSTRACT
Consider a set of sensors that wish to consent on the message
broadcasted by a multi-antenna transmitter in the presence of
white-noise jamming. The jammer’s interference introduces
correlation across receivers and destroys the decomposable
form of the maximum-likelihood decoder, thus preventing di-
rect application of known distributed detection algorithms.
This paper develops distributed detectors that circumvent this
problem. Treating the jammer signal as deterministic, we de-
velop two distributed estimation-decoding algorithms. The
first algorithm relies on the generalized likelihood ratio test,
whereas the second algorithm relies on semi-definite relaxation
techniques and is suitable for large alphabet sizes. Both algo-
rithms feature: (i) distributed implementation requiring only
single-hop communications; (ii) no constraints on the network
topology so long as it is connected; and (iii) performance close
to the optimum centralized detector in the presence of severe
jamming.

Index Terms— consensus, jamming, generalized likeli-
hood ratio test, semi-definite relaxation, distributed algorithm

1. INTRODUCTION

Consider the scenario depicted in Fig.1, where a multi-antenna
access point (AP) broadcasts a common message to a set of
single-antenna receivers in the presence of a white-noise jam-
mer. Each receiver forms an estimate of the broadcasted mes-
sage by iteratively processing its local observations and ex-
changing messages with one-hop neighboring receivers. The
objective is to have all receivers reach an agreement (consen-
sus) on the decoded message while at the same time mitigating
the jammer’s effect by collecting the available spatial diversity.
The jammer’s interference introduces spatial correlation

among noise terms at different sensors and renders distributed
decoding much more challenging. The difficulty arises because
state-of-the-art distributed detection and estimation algorithms
apply to objective functions that can be decomposed as a sum
of terms, with each term available only at a specific receiver
[3, 5, 6]. The common noise terms introduced by the jammer
destroy the decomposable structure of the objective function
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Fig. 1. System setup

and prevents direct application of known distributed consensus
algorithms [3, 5, 9]. Discarding the correlations to allow for
distributed designs causes severe error performance degrada-
tion, as the jammer interference can be much stronger than the
white ambient noise.
We will devise two distributed decoders that exploit these

correlations. The main idea is to treat jamming and ambient
noises separately. While the uncorrelated ambient noise is used
to form the probability density function (pdf) as in maximum-
likelihood (ML) detection, the jammer’s signal is treated as de-
terministic but unknown and common to all receivers. This
novel approach accommodates non-Gaussian jammers as well.
Based on this idea, the first algorithm implements a generalized
likelihood ratio test (GLRT), while the second algorithm builds
on the semi-definite relaxation (SDR) decoding approach of
[7, 8]. The novel SDR aims to reduce the communication over-
head that the GLRT based one incurs for large constellations, as
SDR features inter-sensor exchanges of polynomial order com-
pared to the exponential overhead of GLRT. The proposed SDR
is a modified version of [9] that accounts for jamming effects.
Relative to ML, both distributed decoders feature distributed
implementation at the cost of sub-optimum performance. How-
ever, the degradation is shown to be small for a strong jammer
(e.g., 10 dB stronger than ambient noise).

2. PROBLEM FORMULATION

Consider the AP is equipped with M transmit antennas and
broadcasts a data vector b to a network of K single-antenna
sensors. The jammer generates noise signal J . The received
signal at the k-th sensor is yk := hT

k b+gkJ +wk, where hk is
the transmitter-receiver channel gain vector, gk is the jammer-
receiver channel gain, and wk denotes the receiver noise, which
is uncorrelated from sensor to sensor. It is assumed that the k-
th sensor knows its own channel gains hk and gk. Notice that
the time index is omitted for notational simplicity. Stacking the
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received signals from all sensors in y := [y1, . . . , yK ]T , the
input/output (I/O) relationship becomes

y = Hb + Jg + w (1)

where g := [g1, . . . , gK ]T , w = [w1, . . . , wK ]T , and H :=
[h1, . . . ,hK ]T . For simplicity, and without loss of generality,
we pick b from a real-valued alphabetAb with cardinality L :=
|Ab|. Accordingly, (1) is real-valued with J ∼ N (0, σ2

J) and
w ∼ N (0, I). From (1), the aggregate noise covariance matrix
is

C := E
[
(w + Jg)(w + Jg)T

]
= I + σ2

JggT . (2)
Applying the matrix inversion lemma [2, pp. 534] to simplify
C−1, the ML detector of b in (1) becomes

b̂ML :=arg min
i={1,...,L}

��
y−Hb(i)

�T
�
I − σ2

JggT

1+σ2
J‖g‖2

��
y−Hb(i)

��

(3)
where b(i) denotes the i-th candidate data block and i is associ-
ated with a corresponding hypothesis. Since C−1 is not diago-
nal, terms such as (yk−hT

k b)(yj−hT
j b), with k �= j, appear in

the objective and hinder the distributed implementation of (3).

3. DISTRIBUTED GLRT DECODER

To circumvent the problem, we treat J as a deterministic para-
meter and remove it from the covariance matrix in (2). The new
covariance C′−1 := (E[wwT ])−1 = I is diagonal and renders
the objective decomposable. On the other hand, the pdf of y
is now parameterized by the unknown J , and thus the detector
becomes a composite hypotheses test. To solve it, we resort to a
generalized like-likelihood ratio test. The GLRT detector yields
[2, Section 6.4]

b̂GLRT := arg min
i=0,...,L−1

‖y − Hb(i) − Ĵ (i)g‖2 (4)

Ĵ (i) := arg min
J

‖y − Hb(i) − Jg‖2. (5)

We can solve (5) for Ĵ (i) in closed form and plug it back into
(4) to find

b̂GLRT := arg min
i=1,...,L

��
y − Hb(i)

�T
�
I − ggT

‖g‖2

��
y − Hb(i)

��
.

(6)
One observes that if σ2

J is large, (3) and (6) yield essentially
the same solution. On the other hand, (6) allows for an easy
distributed implementation while (3) does not.

3.1. Estimation-Decoding Algorithms

For a fixed value of i in (4) and (5), we implement (5) using
the alternating-direction method of multipliers (AD-MoM) [6].
First, we replace the optimization variable J in (5) with a set of
local variables Jk and rewrite (5) as⎧⎪⎨
⎪⎩

min
{(Jk),(J̄k)}K

k=1

K∑
k=1

(yk − hT
k b(i) − gkJk)2

subject to Jk = J̄n, ∀k = 1, . . . , K, ∀n ∈ N (k)
(7)

where we have introduced the consensus variables J̄n, and
N (k) denotes the set of one-hop neighbors of node k. Note
that (7) and (5) yield the same solution, as proved in [6]. Next,
we form the augmented Lagrangian of (7) as

L
({

Jk, J̄k, {λn
k}n∈N (k)

}K

k=1

)
:=

K∑
k=1

[
1
2

(
yk − hT

k b(i)− gkJk

)2

+
∑

n∈N (k)

λn
k (Jk − J̄n) +

∑
n∈N (k)

ck

2
(Jk − J̄n)2

]
(8)

where ck > 0 are arbitrary penalty factors, λn
k are Lagrange

multipliers and the factor (1/2) is for mathematical conve-
nience. Notice that the k-th summand inside the bracket is only
a function of the local observations at the k-th node, as well
as its neighboring consensus variables (which can be commu-
nicated). We invoke AD-MoM to iteratively optimize (8) over
Jk’s, J̄n’s, and λn

k ’s in a distributed fashion. The algorithm is
summarized below (cf. [1, Sec. 3.4] and [6]):

Algorithm 1.1 Set J̄n(0) = λn
k (0) = 0 for all k, n. For it-

erations t = 0, 1, . . . , T − 1 (T denotes maximum number of
iterations) repeat the following steps:
Step 1. For each k = 1, . . . , K update Jk as

Jk(t + 1) =
gk(yk − hT

k b(i)) +
∑

n∈N (k)

[
ckJ̄n(t) − λn

k (t)
]

g2
k + |N (k)|ck

and communicate ckJk(t + 1) + λn
k (t) to neighbors in N (k).

Step 2. For each n = 1, . . . , K, update J̄n as

J̄n(t + 1) =

∑
k∈N (n) [ckJk(t + 1) + λn

k (t)]∑
k∈N (n) ck

and communicate J̄n(t + 1) to neighbors in N (n).
Step 3. For each k = 1, . . . , K, update λn

k as

λn
k (t+1) = λn

k (t)+ ck

(
Jk(t + 1) − J̄n(t + 1)

)
, ∀n ∈ N (k).

For T sufficiently large, J̄k(T ) ≈ Ĵ (i) for all k = 1, . . . , K
[1, Sec. 3.4], [6]. Having now the estimate of Ĵ (i) available at
each node, we turn our attention back to (4) and observe that

‖y−Hb(i) − Ĵ (i)g‖2 =
K∑

k=1

(
yk − hT

k b(i) − gkĴ (i)
)2

. (9)

After normalizing by K−1, equation (9) can be seen as a con-
sensus averaging cost. To find its value, we rely on an existing
algorithm [4]:

Algorithm 1.2 Define pk(0) := (yk −hT
k b(i) − gkĴ (i))2 ∀k =

1, . . . , K. For iterations t = 0, 1, . . . , T − 1 update pk for k =
1, . . . , K as

pk(t + 1) = pk(t) + μ
∑

n∈N (k)

(pn(t) − pk(t))
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where μ is a constant step size that should be chosen suffi-
ciently small to ensure convergence [3].

Provided T is large enough, pk(T ) ≈ ‖y−Hb(i)−Ĵ (i)g‖2

for all k. For each value of i in (4) and (5), Algorithms 1.1
and 1.2 are run consecutively. Afterwards, the b(i) that yields
the smallest pk over all L hypotheses is chosen as the GLRT
estimate. Since all nodes reach consensus on pk, they will reach
consensus on b̂GLRT as well.
To obtain this estimate, 2TL iterations are required and

each node has to communicate 3TL scalars. Since L grows ex-
ponentially with M and the constellation size, this distributed
GLRT may have prohibitively high complexity as the number
of hypotheses increases. This motivates the distributed SDR
decoder described next.

4. DISTRIBUTED SDR DECODER

ML decoding incurs high complexity because the integer con-
straint on b renders it non-convex. Since the bi-dual problem
(dual of the dual) of ML optimal decoding is convex, it can be
efficiently solved and its solution can be used to approximate
the original ML solution. This is the well-known Lagrangian
relaxation method in optimization. For 16-QAM and smaller
constellations, SDR essentially solves the ML bi-dual problem
[8]. For higher-order constellations, SDR is not ML bi-dual and
has to be further modified to ensure convexity; nonetheless, its
performance remains satisfactory [7]. A distributed SDR algo-
rithm was recently proposed [9], but it requires decomposabil-
ity of the ML detector. We will derive a modified version of
this detector that incorporates the jammer’s effect. We treat J
as deterministic but unknown and seek to jointly estimate b and
J in (1) using the ML criterion. For that matter, notice that

‖y − Hb − Jg‖2 =
K∑

k=1

(
yk − hT

k b − gkJ
)2

=
K∑

k=1

[
bT J 1

]T

⎡
⎣ hkhT

k gkhk −ykhk

gkhT
k g2

k −ykgk

−ykhT
k −ykgk y2

k

⎤
⎦

⎡
⎣ b

J
1

⎤
⎦

:=
K∑

k=1

xT Qkx =
K∑

k=1

Tr(XQk), X := xxT (10)

where x,Qk in the third line are defined from the second line
and Qk depends on the k-th sensor local observations only.
SinceX := xxT , it satisfiesX ≥ 0 (in the semi-definite sense),
rank(X) = 1 andXi,i = 1, for i = 1, . . . , M,M +2, where for
simplicity a binary constellation b ∈ {±1}M is considered (see
also [7, 8] for available generalizations). With these definitions,
the optimization problem becomes{

min
{X}

∑K
k=1 Tr(QkX)

subject to X ∈ P, rank(X) = 1
(11)

where the set P is defined as
P = {X|X ≥ 0, Xi,i = 1, i = 1, . . . , M, M + 2}.

Notice that now X carries b and J , and the jammer has in-
creased SDRmatrix-vector dimensions by one compared to [9].
Using a similar argument that lead us from (5) to (7), the SDR
problem which minimizes (10) over X can be written in the
equivalent form{

min
{Xk,X̄k}K

k=1

∑K
k=1 Tr(QkXk)

subject to Xk = X̄n, ∀n ∈ N (k), Xk ∈ P
(12)

where the rank constraint is dropped to convexify the problem.
The augmented Lagrangian for (12) is formed by

L
({

Xk, X̄k, {Λn
k}n∈N (k)

}K

k=1

)
:=

K∑
k=1

[
Tr(XkQk)

+
∑

n∈N (k)

Tr
(
Λn

k
T (Xk − X̄n)

)
+

∑
n∈N (k)

ck

2
‖Xk − X̄n‖2

F

]

where F denotes the Frobenius norm of a matrix and Λn
k are

Lagrange multiplier matrices. The AD-MoM algorithm for
L(.) is derived as follows (cf. [9]):

Algorithm 2. Set X̄k(0) = Λn
k (0) = 0 for all k, n. For itera-

tions t = 0, 1, . . . , T − 1 repeat the following steps:
Step 1. For each k = 1, . . . , K, updateXk as

Xk(t + 1) = arg min
X∈P

[
Tr(XQk) +

∑
n∈N (k)

Tr
(
Λn

k (t)T (X − X̄n(t))
)

+
∑

n∈N (k)

ck‖X − X̄n(t)‖2
F

]

and communicate ckXk(t + 1) + Λn
k (t) to neighbors in N (k).

Step 2. For each n = 1, . . . , K, update X̄n as

X̄n(t + 1) =

∑
k∈N (n) [ckXk(t + 1) + Λn

k (t)]∑
k∈N (n) ck

and communicate X̄n(t + 1) to neighbors in N (n).
Step 3.For each k = 1, . . . , K, update Λn

k as

Λn
k (t+1) = Λn

k (t)+ck

(
Xk(t + 1) − X̄n(t + 1)

)
,∀n ∈ N (k).

If T is sufficiently large, X̄k(T ) approximates the solu-
tion of (12) ∀ k = 1, . . . , K. To recover the estimates b̂SDP

from X̄k(T ) we will follow the eigenvalue decomposition ap-
proach of [8]. As for the communication overhead, a total
of T iterations are needed irrespective of M and constellation
size. For one algorithm run, each node has to communicate
T (M + 2)(M + 3) scalars which grows as a polynomial func-
tion ofM .
It is important to remark that the solution of (11) is not

equivalent to the centralized SDR problem. We derived (11)
from (1) after treating J as a deterministic parameter; while the
centralized SDR is derived directly from (3), where J is incor-
porated into the pdf (see [7, 8]). The performance gap between
the two will be assessed through the simulations.
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5. SIMULATIONS

In this section, we depict the bit-error rate (BER) performance
of distributed GLRT and SDR algorithms derived in Sections
3 and 4 as a function of the signal-to-noise ratio (SNR). We
consider a setup with a jammer 10 dB stronger than the am-
bient noise. We use a randomly generated connected graph to
determine the one-hop communication links among receivers.
Receiver’s one-hop neighbors are assumed to be sufficiently
close to justify error-free message exchanges with error-control
coded communications.
Fig. 2 depicts BER performance of the distributed GLRT

algorithm for T = 3, 6, 15 iterations using M = 3 transmit-
antennas andK = 6 receivers. The centralized ML is also plot-
ted as a benchmark. Note that the performance is satisfactory
even with T = 3 iterations. We also include the performance of
the ML detector with correlations discarded. The BER perfor-
mance is considerably degraded as no collaborative jamming
mitigation is possible in this case.
Fig. 3 depicts BER performance of the distributed SDR al-

gorithm as a function of SNR forM = 3 transmit-antennas and
K = 6 receivers for a 16-QAM constellation. The centralized
SDR is also plotted for comparison, along with the distributed
SDR in [9], where the correlations are discarded. Note that the
proposed detector considerably outperforms [9] with a perfor-
mance gap of more than 4 dB. In addition, the performance of
the proposed method is almost the same as the centralized SDR.

6. CONCLUSIONS

The problem of distributed decoding under a white noise jam-
ming attack was investigated. Jammer’s interference introduces
correlation across receivers and destroys the decomposable
structure of the objective required for distributed implemen-
tation. Treating the jammer as a deterministic unknown para-
meter to maintain the objective’s decomposable structure, two
distributed decoding algorithms, namely GLRT and SDR, were
developed. Simulations determined that their performance re-
mains close to their optimum centralized counterparts when the
jammer interference is much stronger than the ambient noise.
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