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ABSTRACT

We consider a wireless sensor network for distributed estima-

tion over Rayleigh fading channels. The sensors transmit their

observations over fading channels to a fusion center, where a

source parameter is estimated. Since the sensor transmissions

add incoherently over a multiple access channel, we consider

partial channel knowledge at the sensors to improve perfor-

mance. We calculate the variance of the estimate when the

channel phase is quantized uniformly and fed back to the sen-

sors. We show that as few as 3 bits of feedback is sufficient

for a loss in performance of about 5%. We also show that the

performance is robust in the presence of feedback errors.

Index Terms— Distributed estimation, Fading channels,

Feedback, Quantization, Sensor Networks

1. INTRODUCTION

Distributed estimation with multiple sensors transmitting data

over wireless channels is used in areas such as environmen-

tal monitoring and remote sensing. In the most general case,

sensors observe data, and after compression and channel cod-

ing, transmit their observations to a fusion center over wire-

less channels. The fusion center then processes the data and

provides an estimate of the parameter being observed. We

consider the case where the sensor data is transmitted over

multiple access fading channels to a fusion center as shown in

Figure 1. Amplify and forward with a total power constraint

is used, owing to its asymptotic optimality [1].

It is shown in [2] that if the channels between the sen-

sors and the fusion center are zero-mean and sensors have no

channel knowledge, the performance of the estimator is poor

when the histogram of a finite alphabet source is being esti-

mated. A solution to this problem is to provide channel infor-

mation to the sensors with feedback from the fusion center. In

[3], the authors consider deterministic and non-fading chan-

nels, where the sensor gains are selected to minimize the vari-

ance of the estimator under perfect channel feedback. In [4],

we investigated the performance of the system over Rayleigh

fading channels for a large number of sensors, with different

choices of feedback from the fusion center to the sensors. We

showed that the variance with only channel phase feedback

Fig. 1. System Model.

instead of full channel feedback incurs a performance loss of

less than a factor of 4/π in the variance, compared to the op-

timal case.

Since the feedback channel has a limited capacity, it is

natural to characterize the effect of limited feedback on per-

formance. We show that the feedback of only channel phase,

even when quantized, leads to a surprisingly small perfor-

mance loss. We also characterize the effect of errors in feed-

back on the performance.

2. SYSTEM MODEL

Figure 1 shows our wireless sensor network setup. The fusion

center aggregates data from the L sensors in the network and

estimates the random parameter, θ, observed by the sensors in

additive Gaussian noise. The sensors transmit their observa-

tions to the fusion center over L independent Rayleigh fading

channels. The estimate obtained at the fusion center is repre-

sented by θ̂. It is assumed that the fusion center has complete

knowledge of the channels and sensor gains but only statisti-

cal information about the noise sources.

The gains on the channel between the lth sensor and the

fusion center, represented by hl, are i.i.d., and distributed as

CN (0, 1). The observation noise added between the parame-

ter and the sensors is given by nl ∼ CN (0, σ2
n), l = 1, . . . , L

and the noise added on the multiple-access channel is repre-
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sented by v ∼ CN (0, σ2
v). Each sensor contributes a gain

of αi to the received signal, before forwarding the data to the

fusion center using the amplify and forward scheme. The ran-

dom parameter being estimated, θ, has variance σ2
θ . All the

noise sources, the channels and the random parameters are

statistically independent of each other. The received signal at

the fusion center is given by

y =
L∑

i=1

(θ + ni)αihi + v, (1)

where the sensor gains are constrained in terms of the total

power PT by

P =
L∑

l=1

|αl|2 =
PT

σ2
θ + σ2

n

. (2)

The estimator for θ̂ at the fusion center is linear and unbi-

ased as below:

θ̂ =
y∑L

i=1 αihi

= θ +
∑L

i=1 niαihi∑L
i=1 αihi

+
v∑L

i=1 αihi

. (3)

2.1. Performance Evaluation

Before we address the finite-rate feedback case, we summa-

rize our results in [4]. It has been shown in [4], that the vari-

ance of θ̂ in (3) is given by

var
(
θ̂
)

=
σ2

n

∑L
i=1

(
|αi|2 |hi|2

)
+ σ2

v∣∣∣∑L
i=1 αihi

∣∣∣2 . (4)

When the channels are fading, the hl’s are random and

consequently, the variance is random. In the cases that are of

interest to us, the amplification factor αi depends on hi which

means that there is (partial) channel state information at the

sensors (CSIS). In these cases, the variance in [4] goes to zero

in such a way that

lim
L→∞

Lvar
(
θ̂
)

= C, (5)

where C is a deterministic constant. We will use different val-

ues of C for different choices of partial feedback to quantify

the performance of the system. Clearly, a smaller value of C
is preferred.

Since the performance over the AWGN channel is ex-

pected to behave better than over fading channels, we can

obtain a lower bound on C by setting hl = 1 ∀l. To respect

the power constraint, we set αl =
√

P/L. Substituting the

values of αl and hl in (4), we obtain

CAWGN =
σ2

nP + σ2
v

P
. (6)

2.2. Performance over Rayleigh Fading Channels

When there is no channel state information at the sensors

(CSIS), the sensor gains are all set to equal constants, αl =√
P/L ∀l. It can be seen that the denominator in (4), prop-

erly normalized, converges to zero, which indicates poor per-

formance with large variance. When non-zero mean channels

such as Rician or Nakagami channels are used, even with no

CSIS, the denominator converges to a non-zero constant. The

variance of θ̂ now exists, and decays to zero in a way that

satisfies (5), as shown in [4].

A solution to the zero mean channel problem is to provide

some channel information as feedback from the fusion center

to the sensors in order to make the effective channel (αlhl)

non-zero mean. The best performance for fading channels is

obtained when the sensors receive complete channel informa-

tion from the fusion center and optimize the sensor gains to

minimize the variance of θ̂ subject to the power constraint [4].

In this case, (5) becomes

COPT =
σ4

nP 2 − e
σ2

v
P2σ2

n σ2
vE1

(
σ2

v

P 2σ2
n

)
σ4

nP 2
, (7)

where

E1(x) =
∫ ∞

1

e−txdt

t
=

∫ ∞

x

e−udu

u
.

The computational complexity required to calculate the

optimal sensor gains is large. Also, the values for the αl’s

have a very large dynamic range across sensors and across

time. Alternatively, we can set equal magnitude gains to sat-

isfy the power constraint on the sensors, and the phases of

the sensors are set to cancel the phase of the channels, i.e.,

αi =
√

P/Le−j � hi . Using (4) and (5), the performance in

this case can be quantified [4] as

CPO =
σ2

nP + σ2
v

P

4
π

. (8)

Clearly, CPO ≥ COPT ≥ CAWGN and in [4], we showed

that CPO = (4/π)CAWGN . It can be seen that CAWGN can

be viewed as a simple benchmark, and CPO is only a factor

of 4/π worse that CAWGN . However, CAWGN is not nec-

essarily achievable over fading channels for some choice of

{αl}L
l=1, whereas COPT represents an achievable benchmark

[4].

3. FINITE RATE FEEDBACK

If we feedback both the channel gain and phase, the perfor-

mance will be better than if we feedback only the channel

phase. However, for a fading channel, the magnitude of the

channel gain has a very large dynamic range. Developing a

robust scheme to quantize channel gain in this scenario is non-

trivial. In what follows, we describe quantizing the phase-

only feedback and analyze its performance for large L using

(4) and (5).

2254



Let the number of bits used for phase-only feedback be

q. The phase of each channel coefficient will be divided into

2q sectors and from each sector, a representative angle is se-

lected. When the channel angle falls within a particular sec-

tor, the phase that is fed-back to the sensor with that chan-

nel is the representative angle of that particular sector. Each

sector spans an angle of 2π/2q . The worst possible error oc-

curs when the actual phase is on the sector boundary, and is

π/2q . To send the appropriate phase feedback, each sector

is mapped to a q-bit sequence. This sector-to-bit sequence

mapping is similar to decision regions for M -PSK.

Since we have no channel magnitude information, we set

the magnitudes of all sensor gains to
√

P/L. Therefore,

αl,q =

√
P

L
e−jfq(hl), (9)

where fq(hl) is the representative angle of the specific sector.

With fq(hl) ∈
{

ej 2πk
2q

}2q−1

k=0
, each quantization point, fq(hl),

is chosen as:

fq(hl) = min
k

∣∣∣∣ � hl − 2πk

2q

∣∣∣∣ . (10)

Substituting this in (4), we have

var
(
θ̂
)

=
σ2

nP 1
L

∑L
i=1 |hi|2 + σ2

v

PL
[

1
L

∑L
l=1 |hl| e−j[fq(hl)−� hl]

]2 . (11)

Using law of large numbers and the fact that the variance

is a continuous function of the denominator which is positive,

we obtain

CPO(q) = lim
L→∞

Lvar
(
θ̂
)

=
σ2

nP+σ2
v

P
4
π[

E
(
e−j{fq(hl)−� hl})]2 .

(12)

To calculate (12), let φ = (fq(hl) − � hl). Since this is

the error in phase and because � hl is uniformly distributed, φ
is uniform between −π/2q and π/2q. From this:

E
[
e−jφ

]
=

2q−1

π

∫ π
2q

− π
2q

e−jφdφ =
2q

π
sin

( π

2q

)
. (13)

Substituting (13) in (12), it follows that

CPO(q) =
[
sinc(2−q)

]−2
CPO, (14)

where CPO is as in (8) and sinc(x) = (sin(πx))/(πx).
Loss in performance due to quantization is CPO(q)/CPO,

which takes the value of 2.4674 for q = 1 and is 1 as q → ∞.

It is interesting that due to our large sensor analysis, we can

simply relate the performances for the AWGN benchmark,

q 1 2 3 4 5
CP O(q)

CP O
2.4674 1.2337 1.0530 1.0130 1.0032

Table 1. Degree of deterioration due to quantization.

phase-only, and quantized phase-only cases using the follow-

ing:

CPO(q) = CAWGN

(
4
π

)
︸ ︷︷ ︸

CP O

[
sinc(2−q)

]−2
. (15)

Table 1 contains the values of CPO(q)/CPO for different

values of q. It can be seen that by using three bits of quantiza-

tion, there is an increase in variance of about 5% and for five

bits, the deterioration is less than a percent.

Figure 2 shows the effect of quantization on the perfor-

mance of the system at low P . The best performance is seen

for COPT described in (7). The next best performance is ob-

tained for CPO in (8). Between CPO and COPT , there is

a loss of less than a dB caused by not feeding back chan-

nel magnitudes. For two bits of quantization, there is a loss

in performance by a factor of about 1 dB compared to CPO.

Comparing CPO with when we use four bits of quantization,

we find that the loss incurred by quantization is negligible.

3.1. Error on the Feedback Channel

When the feedback channel is noisy, it induces errors in the

feedback bit sequence. If the probability of one bit being tog-

gled is p, the probability of having one bit error in the bit

sequence is p(1 − p)q−1. The probability of making a two

bit error is p2(1 − p)q−2 which is negligible compared to

p(1 − p)q−1 when p � 1. The probability of making two

or more bit errors is very low and we can approximate the

performance by analyzing when there is only a one bit error.

Since flipping one bit in the feedback sequence will move the

phase from the sector representing the actual channel phase

to some other sector, we need to ensure that the region-to-bit

mapping is least sensitive to one bit errors. In Gray coding

for M -PSK, the goal is to have a single bit error for the most

likely symbol errors. Conversely, in our set-up, we would like

every one bit error to cause as little phase-error as possible.

Interestingly, Gray coding is a good choice for this problem

as well. The Gray codes are generated as detailed in [5]. In

addition, the structure and symmetry provided by the Gray

code greatly simplifies analysis.

We enumerate the sectors staring from 0 to 2q − 1, and

represent them using the respective Gray codes. We can have

q possible sequences as a result of a one-bit error. This will

cause the feedback to be misinterpreted to be one of q incor-

rect phases. With Gray mapping, two of the wrong phases lie

in adjoining sectors, and cause minimum error.

In order to evaluate the performance of the system, calcu-

late (12) in the presence of feedback errors. The only factor in
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Fig. 2. Variance for different q.

the equation affected by the errors in feedback is the expected

value in the denominator. We recompute it as follows:

E
[
e−jφ

]
=Pr(no error)E

[
e−jφ|no error

]
+ Pr(one bit error)E

[
e−jφ|one bit error

]
+ o(p)

≈(1 − p)q−1 2q

π

[
sin

( π

2q

)]
×

[
(1 − p) + p

{
e−j 2π

2q +
q−1∑
k=1

ej
2(2k−1)π

2q

}]
,

(16)

where o(p) represents terms that go to zero faster than p as

p → 0.

Therefore, for large values of L, from (5) and (12), the

performance due to error in feedback can be defined as

CPO(q, p) =(1 − p)−2(q−1)CPO(q)

×
∣∣∣∣∣(1 − p) + p

{
e−j 2π

2q +
q−1∑
k=1

ej
2(2k−1)π

2q

}∣∣∣∣∣
−2

.

(17)

It can be verified that CPO(q, 0) = CPO(q). Table 2

shows the effect of errors on the feedback channel. It can be

seen that even with using only a few bits (q = 5) and a large

probability of error (p = 0.1), the deterioration from CPO is

only a factor of about 1.5.

4. CONCLUSIONS

For the wireless sensor network considered, the best perfor-

mance is obtained when the sensors have complete channel

q CP O(q,0)
CP O

CP O(q,0.01)
CP O

CP O(q,0.1)
CP O

1 2.4674 2.5691 3.8553

2 1.2337 1.2843 1.8804

3 1.05300 1.1026 1.6943

4 1.01295 1.0691 1.6640

5 1.003219 1.0653 1.5204

Table 2. Degree of deterioration due to feedback errors.

information and we optimize their gains to minimize the vari-

ance of the estimate, subject to a power constraint. Instead,

with channel phase information only, all the sensors exhibit

a constant magnitude gain and adjust only their respective

phases. This is better suited for practical reasons, and we have

shown that the loss in performance is low, making it prefer-

able for implementation in sensor networks.

Since in most cases, there is a large bandwidth constraint,

the feedback signals are quantized. This quantization causes

a further performance loss. When using more than 4 bits,

this loss in performance is contained to within 1%. When the

feedback channel is noisy, the case of one bit error is consid-

ered. In that case, when 5 bits of quantization are used and

with a probability of error of 0.01, there is only a 4% loss in

performance compared to the no-quantization case.

The performance with quantization causes a very small

loss in performance and is robust to error. Therefore, the

proposed scheme of quantization and phase to bit mapping

is computationally simple and easy to implement.
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