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ABSTRACT

The fusion of information from heterogenous sensors is crucial to
the effectiveness of a multimodal system. Noise affect the sensors of
different modalities independently. A good fusion scheme should
be able to use local estimates of the reliability of each modality
to weight the decisions. This paper presents an iterative decoding
based information fusion scheme motivated by the theory of turbo
codes. This fusion framework is developed in the context of hid-
den Markov models. We present the mathematical framework of
the fusion scheme. We then apply this algorithm to an audio-visual
speech recognition task on the GRID audio-visual speech corpus and
present the results.

Index Terms— Multimedia systems, Iterative decoding, Speech
recognition, Hidden Markov models, Robustness

1. INTRODUCTION

In recent years audio visual speech recognition has emerged as a
prime solution to speech recognition in drastic conditions. It is sup-
ported by the fact that speech is bimodal and by the necessity for
a modality that is robust to background acoustic noise. Other hu-
man activity analysis systems have also increasingly come to rely on
multimodal sensors for similar reasons. Typically, the audio modal-
ity provides information that complements the video modality. In
both these cases, the information fusion scheme that combines the
information from different modalities is very important.

Sensor noise affects the different modalities independently. More-
over in most real applications, the noise in each modality is non sta-
tionary. In most existing schemes, the reliability of the modality is
estimated based on SNR or other measures and used in the fusion
framework. This is a major disadvantage of such schemes because
the quality of the modalities is in general time-varying and estimat-
ing it is non-trivial.

In this paper we present a fusion framework which is based on
the theory of iterative decoding. The iterative decoding framework
described here applies to HMM based recognition tasks. We demon-
strate the effectiveness of the algorithm in a real world problem of
audio-visual speech recognition on the GRID audio visual speech
corpus [1]. This work is related to our journal submission [2], which
contains more details of the iterative decoding framework along with
results from synthetic problems and a simple audio-visual speech
segmentation task. In this paper we extend the scope of the iterative
decoding algorithm to the problem of audio-visual speech recogni-
tion.
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2. RELATED WORK

Audio visual speech recognition (AVSR) has attracted a lot of at-
tention from researchers in recent years. The summer workshop at
JHU in 2000 [3] summarized the various approaches to construct an
AVSR system, including feature extraction, feature fusion and de-
cision fusion techniques. In [4], Nefian et. al. proposed a coupled
HMM as a model for the AVSR problem. Several other schemes in-
cluding discriminatory learning techniques like boosting and SVMs
have been investigated to improve the efficiency of AVSR. [5] is a
good overview of the main approaches to AVSR so far. As discussed
in the concluding section of [5],

...when combining audio and visual information, a
number of issues relevant to decision fusion require
further study, such as the optimal level of integrating
the audio and visual loglikelihoods, the optimal func-
tion for this integration, as well as the inclusion of suit-
able, local estimates of the reliability of each modality
into this function.

In this paper we present a multimodal information fusion scheme
that addresses some of these concerns, especially the inclusion of lo-
cal estimates of the reliability of each modality into the fusion pro-
cess. This advantage of the iterative decoding scheme is discussed
in detail in [2].

3. ITERATIVE DECODING FRAMEWORK

3.1. Advantages of the iterative decoding scheme

In many applications like ASR, well-trained unimodal models might
already be available. Iterative decoding utilizes such models directly.
Thus, extending the already existing unimodal systems to multi-
modal ones is easier. Another common scheme used to integrate uni-
modal HMMs is the product HMM [6].The iterative decoding algo-
rithm performs better than the joint model and the product HMM in
the presence of background noise. In the case of other decision level
fusion algorithms like the multistream HMMs and factorial HMMs
[7] [4] and reliability weighted summation rule, one has to estimate
the quality(SNR) of the individual modalities to obtain good perfor-
mance. Iterative decoding does not need such apriori information.
This is a very significant advantage of the iterative decoding scheme
because the quality of the modalities is in general time-varying. For
example, if the speaker keeps turning away from the camera, video
features are very unreliable for speech recognition. The exponential
weighting scheme of multistream HMMs requires real time moni-
toring of the quality of the modalities which in itself is a non-trivial
problem.

ICASSP 2008



A good fusion scheme should have lower error rates than those
obtained from the unimodal models. The joint modeling frame-
work as well as the iterative decoding framework have this property.
Building joint models requires significantly greater amounts of mul-
timodal data than training unimodal models due to the increase in
dimensionality or complexity of the joint model or both. Working
with unimodal models also makes it possible to use a well-learned
model in one modality to segment and generate training data for the
other modalities, thus overcoming the problem of lack of training
data to a great extent.

3.2. Turbo codes and Iterative decoding

Turbo codes are a class of convolutional codes that perform close to
the Shannon limit of channel capacity. The seminal paper by Berrou
et al.[8] introduced the concept of iterative decoding. Turbo codes
achieve their high performance by using two simple codes instead of
a single complex code. The iterative decoding scheme is a method
to combine the decisions from the two decoders at the receiver.

We draw an analogy between the fusion of decisions at the turbo
decoder and the fusion of multimodal information modeled by HMMs.
In turbo codes, the transmitted bits are decoded using the likelihood
values from one simple code as extrinsic information to decode the
same bits from the other code. The new information in these likeli-
hood values from the second decoder are then passed back to the first
decoder for improved decoding. In this paper, the iterative decoding
strategy is used to decode the hidden states of a HMM based on ob-
servations from multiple modalities. Each decoder corresponds to
a unimodal HMM and the likelihood of the decoded hidden states
are used as extrinsic information for decoding the hidden states in
the next modality. In the next section we present the mathematical
details of the iterative decoding scheme.

3.3. Hidden Markov Models

Let w = (A, w, B) represent the parameters of a HMM with N hid-
den states, that models a particular activity. Now, the decoding prob-
lem is to estimate the optimal state sequence Qf = {q1,92...qr}
of the HMM based on the sequence of observations,

of = {o1,02...07}.

The maximum aposteriori probability state sequence is provided
by the BCJR algorithm[9]. The MAP estimate for the hidden state
at time t is given by ¢ = arg max P(g:, OT ). The BCJR algorithm
computes this using the forward and backward recursions.

Define,

Ae(m) = P(g=m,07)

at(m) = Pg =m, Oi)

Be(m) P(Ofy1lge = m)
Ye(m',m) = P(g = m,o0¢lg—1 =m'),

m=1,2...Nm' =1,2...N

Then establish the recursions,

au(m) = Y aua(m) - y(m,m)
Be(m) = Z Beyr(m') - yega(m,m’)
Ai(m) = ai(m) - Bi(m)
G = argmaxP(q,07) = argmax A\ (m)

3.4. Multimodal scenario

For the sake of clarity, let’s consider a bimodal system. There are
observations OlT from one modality and observations ®1T from the
other modality. The MAP solution in this case would be ¢ =
arg max P(q:, O, ©7). In order to apply the BCIR algorithm to
this case, we can concatenate the observations (feature level fusion)
and train a new HMM in the joint feature space. Instead of building a
joint model, we develop an iterative decoding algorithm that allows
us to approach the performance of the joint model by iteratively ex-
changing information between the simpler models and updating their
posterior probabilities.

3.5. TIterative Decoding Algorithm

This is a direct application of the turbo decoding algorithm[8]. In
this section, it is assumed that the hidden states in the two modalities
have a one to one correspondence. This requirement is relaxed in the
generalized solution presented in the next section.

In the first iteration of the iterative algorithm, we decode the hid-
den states of the HMM using the observations from the first modal-
ity, OF. We obtain the aposteriori probabilities, A\¢(m) = P(q: =
m,OT).

In the second iteration, these aposteriori probabilities, A¢(m) are
utilized as extrinsic information in decoding the hidden states from
the observations of the second modality ©7. Thus the aposteriori
probabilities in the second stage of decoding are given by A¢(m) =
P(gs = m, ®1T, ZlT) where Z; = M\ is the extrinsic information
from the previous step. In order to evaluate A, we modify the BCIR
algorithm as follows.

A(m) = P(g=m,01,2])

ay(m) = P(g =m,01,7%1)

Be(m) = P(etTH, ZtT+1\Qt =m)
ve(m',m) = P(ge =m, 0, Ze|ge—1 = m')

Then the recursions do not change, except for the computation
of y¢(m’, m). Since the extrinsic information is independent of the
observations from the second modality,

Ye(m',m) = P(q: = m|qi—1 = m)-P(0:|q: = m)-P(Zi|q: = m)

Here Z; = [z1t22t . .. th]T is a vector of probability values.
A histogram of each component of Z; for ¢ = 2ina N = 4
state HMM synthetic problem is show in Figure 1. From the his-
togram, one can see that a simple parametric probability model for
P(Zi|q: = m) is obtained as

P(Zilg =m) = f(1 = zme; B) - [ f(za03 )

where,
1, ,—x/B >0
By=4 B¢ T =Y
fapy ={ 50 vz

is an exponential distribution with rate parameter % Other distribu-
tions like the beta distribution could also be used. The exponential
distribution is chosen due to its simplicity. The rate parameter %
which is also the variance of the likelihood values is a measure of
the reliability of the recognition. At each iteration, the variance of

the likelihood values is estimated and used as the rate parameter %
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Fig. 1. A histogram of each component of Z; forq; =2ina N =4
state HMM synthetic problem

In the third iteration, the extrinsic information to be passed back
to decoder 1 is the aposteriori probabilities A¢(m). But part of this
information (A¢(m)), came from decoder 1 itself. Using Z: = A,
in the third iteration destroys the independence between o; and Z;.
From Section 3.3,

Ai(m) =ai(m) - Br(m)
au(m) = aua(m') - ye(m’,m)

Av(m) =3 e a(m') (', m) - Bu(om)
Ai(m) =P(Zt|q: = m) Zat,1(m’)
Plg: = mlqt:: =m') - P(0tlg: = m) - Be(m)
We can thus write A¢(m) as follows,
Ai(m) = P(Zilgp =m) - Y

Note that Y; does not depend on Z; and is hence uncorrelated with
o . This argument follows the same principles used in turbo coding
literature [8]. Hence, we normalize Y; to sum to 1 and consider the
normalized vector to be the extrinsic information passed on to the
first decoder in the third iteration.

The normalized extrinsic information which is passed back to
decoder 1 is given by

- _ Ai(m)/P(Z¢lqe = m)
Yi(m) = S Ae(m) [P (Zi]qr = /)

The iterations are continued till the state sequences converge in
both the modalities or a fixed number of iterations are reached.

3.6. General multimodal problem

In the previous section, we assumed that the hidden states in the two
modalities of a multimodal system are the same. In this section,
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we loosen this restriction and allow the hidden states in the individ-
ual modalities to just have a known prior co-occurrence probabil-
ity. In particular, if ¢; and 7 represent the hidden states in modal-
ity 1 and 2 at time ¢, then we know the joint probability distribu-
tion P(q: = m,r: = m’) and assume this to be stationary. This
corresponds to the case where there is a loose but definite interac-
tion between the two modalities as seen very clearly in the case of
phonemes and visemes, in Audio-visual speech recognition. There
is no one to one correspondence between visemes and phonemes,
but the occurrence of one phoneme corresponds to the occurrence of
a few specific visemes and vice-versa. We now need to compute

ye(m',m) =P(re = m, 0:, ZsJri—1 = m/)
ye(m',m) =P(ry = m|ri—1 = m’)-
P(91|T’t = m) . P(Zt|7“f, = m)

ye(m',m) =P(ry = m|ri—1 = m’) - P(s|re = m)

> AP(Zilae = n)P(ae = nlre = m)}

This can be computed from the joint probability distribution P(q; =
m,rs = m'). The rest of the iterative algorithm remains the same
as before.

4. AUDIO VISUAL SPEECH RECOGNITION TASK

4.1. Database, feature extraction and modeling

We apply the iterative decoding algorithm to the AVSR problem.
The GRID audio-visual speech corpus [1] is used to train the mod-
els and perform the ASR experiment. The results correspond to a
speaker dependent speech recognition system. The GRID corpus is a
51 word small vocabulary speech corpus of six word long sentences.
1000 sentences are uttered by each speaker.

900 utterances are used to train the HMMs and the rest are used
in the test set. Each word is modeled by a three state HMM with a
Gaussian mixture model(GMM) observation density. There are 10
components in each GMM with diagonal covariance matrices. The
audio feature vectors are the 13 MFCC coefficients computed on
20ms windows of audio signal with a 10ms overlap. The video rate
is 25 frames per second. This corresponds to one video frame for
every 4 audio frames. The video features are hence upsampled to
match the audio and video frame rates. In order to extract the video
features, the face of the speaker is detected and tracked using the
Viola-Jones face detector[10]. The current frame is subtracted from
the previous frame to estimate the motion in the mouth region of the
face. The first 16 coefficients of the 2D-DCT of the mouth region
motion map is used as the video feature.

4.2. Results

In the noiseless environment the audio-only speech recognizer has a
state error rate of 12%. The state error rate is measured by comparing
the decoded hidden state sequence with the transcriptions. The state
error rate is a better estimate of the efficacy of our algorithm than
the word error rate as the fusion of information takes place at the
state level. The video-only speech recognizer has a state error rate
of 27%. The iterative decoding algorithm converges to an error rate
of 13% after the third iteration. The audio modality is then corrupted
with white noise so the SNR is now reduced to 5dB. The error rate
of the audio-only speech recognizer is now 40%. But the iterative



decoding algorithm converges to an error rate of 25% after the third
iteration. The results are summarized in Figure 2.

In the speech recognition experiment, we do not have a joint
audio-visual model to compare the performance of the iterative de-

coding algorithm. However, for a clearer understanding of the strengths

of the iterative decoding scheme, we also present some results from
simulations on synthetic data in Figure 3. In this scenario, we can
build a joint model for decoding using both the modalities and we
see that the iterative decoding algorithm performs better than the
joint model in the presence of noise. More elaborate simulations
have been presented in [2].

Note that the error rates presented here are highly dependent
on the choice of the audio and video features. Using better video
features would naturally lead to a better performance in the video-
only speech recognizer and hence the iterative decoding framework
would perform better in the presence of audio noise.
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Fig. 2. State error rates for an audio-visual speech recognition task
on the GRID speech corpus using the proposed scheme. After 3
iterations, the error rate of the iterative decoding algorithm converges
close to the error rate of the best modality.

5. CONCLUSION AND FUTURE WORK

We have presented a multimodal information fusion scheme based
on the theory of iterative decoding. The scheme has been applied to
a AVSR task and the results are encouraging. The iterative decod-
ing framework has the advantage of including local estimates of the
reliability of each modality in the decoding process. This feature is
especially useful in the presence of non stationary background noise.
The scheme is also directly applicable to other multimodal systems
which use HMMs, as is often the case with human activity analysis
systems. In future, we plan to extend the iterative decoding frame-
work to a broader range of multimodal systems.
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