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ABSTRACT

Timbre is the quality of sound which allows the ear to distinguish 
between musical sounds. In this paper, we study timbre effects in 
identification of singing voice segments in popular songs. Firstly, 
we identify between singing voice and instrumental segments in a 
song. Then, singing voice segments are further categorized 
according to their singer identity. Timbre-motivated effects are 
formulated by fusion of systems that use the features from vibrato, 
harmonic information and other features extracted using Mel and 
Log frequency scale filter banks. Statistical methods to select 
singing voice segments with high confidence measure are 
proposed for better performance in singer identification process. 
The experiments conducted on a database of 214 popular songs 
show that the proposed approach is effective. 

Index Terms— Singing voice, singer identification, timbre, 
vibrato, harmonic 

1. INTRODUCTION 

Singing voice detection (SingVD) and Singer identification 
(SingerID) are the two important problems in the area of music 
information retrieval (MIR). The problem of SingVD is formulated 
as follows: given a song, classify each segment of the song as to 
whether it is purely instrumental (nonvocal) segment, or a mixture 
of vocals with/without background instrumental (vocal) segment. 
For the problem of SingerID, it is formulated as identifying singer 
of vocal segments using a classifier such as Hidden Markov 
Models (HMM). Although considerable progress has been made, it 
remains a challenge to automate the SingVD and SingerID systems 
with high precision. 

Some recent works suggest several features for SingVD 
systems. Some methods originate from speech recognition. For 
example, Mel Frequency Cepstral Coefficients (MFCC) [1], Linear 
Prediction Coefficients (LPC) [1], perceptual linear prediction 
coefficients [2], energy function [3] and the average zero-crossing 
rate [3]. Others benefit from the research in music analysis, such as 
spectral flux [3], and relative subband energy [1]. All these 
features are considered to be general spectral features for speech 
and audio recognition. 

A large number of features have been explored for SingerID. 
These include Mel frequency cepstral coefficients (MFCC) [4], 
linear prediction coefficients (LPC) [3], robust estimates of 
spectral envelopes [5] and octave frequency scale based cepstral 

coefficients [6]. 
Recent studies have started looking into perceptual features 

which are able to appreciate the aesthetic characteristics of singing 
voice for music contents processing and analysis. In [7], acoustic 
features are derived based on the instantaneous amplitude and 
frequency of the partials associated to vocal vibrato, to identify the 
singer. Mellody et al. [8] stated that temporal patterns in the vocal 
passage such as vibrato are likely cues to vocal quality. Besides 
vibrato, harmonic spectrum is also a useful feature for both 
SingVD and SingerID. In the study of SingVD, Goto [9] explains 
that, in popular songs, the harmonic structure of singing voice is 
often overlapped by the harmonic structure of keyboard or string 
instruments. Hence, one can see richer harmonic in vocals than in 
nonvocals. For SingerID, harmonics of soprano singer’s voice are 
widely spaced in the spectrum in contrast to that of bass singer’s 
voice [10]. Hence, harmonic spectrum is useful to differentiate 
between low and high pitch singers. 

One of the basic elements of music is timbre or color. Timbre is 
the quality of sound which allows the ear to distinguish among 
different types of sounds [11]. Hence, timbre-motivated effect is 
universal and useful for tasks of music or audio identification 
systems. Several studies propose different methods to formulate 
timbre based features. Poli [12] measured the timbre quality from 
spectral envelope of MFCC features for SingerID. In [13], timber 
is characterized by the harmonic lines of the harmonic sound. In 
[11], timbre is mainly determined by the harmonic content of a 
sound and the dynamic characteristics of the sound such as vibrato 
and attack-decay envelope of the sound. In this paper, we analyse 
the above timbre features formulation methods [11, 12, 13] and 
study different combinations of these individual features in 
formulating timbre-motivated effects for both of SingVD and 
SingerID systems. 

Our approach consists of three steps. First, the test song is 
segmented into vocal and nonvocal segments. Then, we select the 
vocal segments with high confidence measure using statistical 
method. Finally, we categorize the selected vocal segments 
according to their singer identity.  

The rest of the paper is organized as follows. In section 2, we 
discuss in details the procedures to extract features from music 
signal. In section 3, we present the statistical methods for selecting 
vocal segments with high confidence measure. In section 4, we 
present the experiment set-up and results. Finally, we conclude our 
study in section 5. 
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2. ACOUSTIC FEATURES 

As mentioned in the introduction, features based on vibrato, 
harmonic and timbre have characteristics that are useful to 
distinguish different music signals. Firstly, we study the 
characteristics of vibrato and harmonic in singing and instrumental 
signals. Then, several formulation processes for timbre based 
feature are discussed in the following sections. 

2.1. Vibrato 

Vibrato is studied in [7] for SingerID. It is modulation effect on 
pitch and amplitude of a musical tone [14] as illustrated in Figure 
1. The two parameters: the extent and the rate are used to 
characterize the vibrato.
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Figure 1. Three types of vibrato waveforms observed at the note of  
D6, 1174.6Hz  being normalized to 0 at Y-axis  [7] 

Not all instruments can produce vibrato. For example, drum 
sound has no vibrato. However, vibrato presents in the instruments 
such as violin [15]. Figure 1 shows 3 types of vibrato. Type-1 
vibrato has excursions which are balanced to the left and right of 
the note. And, it has wider pitch fluctuation and slower rate of 
vibrato which is referred to as wobble [16]. Type-2 and Type-3 
have fluctuations which are not balanced to the left and right of the 
note. Type-3 vibrato has narrower pitch fluctuation and faster rate 
and is referred to as bleat [17]. Singers or performers have their 
personalized style of vibrato [7]. 
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Figure 2. Vibrato fluctuations and cascaded bandpass filtering 
observed at the note G#5, 830.6Hz.  (a) vibrato fluctuates left (b) 
no fluctuation (c) vibrato fluctuates right.  The upper panel shows 
the spectrum partial. The middle panel presents the frequency 
response of the vibrato filter. The lower panel demonstrates the 
output amplitudes of the vibrato filter. [7]. 

Vibrato information of music signal is extracted using cascaded 
subband filter (referred to as vibrato filter) [7] which is shown in 
middle panels of Figure 2. The vibrato filter has two cascaded 

layers of subbands. The first layer has 96 overlapped trapezoidal 
filters which span up to 16kHz (8 octaves). The center frequencies 
are located at each of the musical notes. Bandwidths of the filters 
are 1.5 semitone from each note since vibrato extent can 
increase more than 1semitone [18]. The list of the frequencies 
of the musical notes can be found in [19]. The second layer has 5 
non-overlapped rectangular filters of equal bandwidths for each 
trapezoidal subband of first layer. Trapezoidal filters are tapered 
between 5.0 semitone to 5.1 semitone. The vibrato 
fluctuations are observed by tracking the sinusoids which is the 
local maxima in the instantaneous amplitude output of the 
subbands in the second layer as shown in the lower panel of Figure 
2. We refer the sinusoids with slowly time-varying amplitude and 
frequency as partials. Local maxima indicate the position of the 
partial. The distance between the center frequency of the 
corresponding filter and the position of the partial informs the 
vibrato extent. The tapered and overlapped trapezoidal filters in 
the first layer allow vibrato fluctuations of adjacent notes observed 
at the output of the subbands in the second layer to be 
‘continuous’. The vibrato filters are able to capture 3 different 
vibrato types. 

2.2. Harmonic

Figure 3. Harmonics and harmonic filtering (a) Singing voice of 
soprano singer (b) Singing voice of bass singer (c) nonvocal signal 

The harmonic structures of singing and instruments are often 
overlapped [9]. Hence, harmonic intensity of singing voice 
segments are higher than that of instrumental segments [3] as 
shown in upper panels of Figure 3. Sopranos have higher 
fundamental frequency than bass singers. Hence, harmonics of 
soprano’s voice is widely spaced in contrast to that of bass singing 
as shown in upper panels of Figures 3(a) and 3(b). These harmonic 
structures are captured using harmonic filter which is shown in 
middle panels of Figures 3. The centre frequencies of the harmonic 
filter are located at each musical notes listed in [19]. The 
bandwidths are 1.5 semitone from each note and the filters spans 
up to 16kHz. Outputs of harmonic filters are given in lower panels 
of Figure 3. For soprano, lower panel of Figure 3(a) shows widely 
spaced peaks. However, the peaks are narrowly spaced in lower 
panel of Figure 3(b) for bass singers. Output subband energies of 
instrumental signal is lower than that of singing voice in lower 
panels of Figure 3. 

2.3. Acoustic feature formulation 

A music signal is divided into frames of 15ms with 10ms 
overlapping. Each frame is multiplied by a Hamming window to 
minimize signal discontinuities at the end of each frame. Then, the 
audio frame is passed through a bank of vibrato filters.  Then, log 
energy of each band in the second layer is calculated. Finally, a 
total of 13 Octave Frequency Cepstral Coefficients (OFCCVIB) are 
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computed from log energies using Discrete Cosine Transform for 
each audio frame. We then replace the vibrato filters with 
harmonic filters to compute the OFCCHAR.

We compute Mel Frequency Cepstral Coefficients (MFCC) 
using Mel-frequency scale and Log Frequency Cepstral 
Coefficients (LFCC) using logarithmic frequency scale [20]. 
LFCC was shown to be useful for SingVD in [20]. For all features, 
we augment the feature coefficients with time derivatives from two 
neighboring frames to capture the temporal information to take 
care of attack-decay envelope in timbre feature [11]. 

2.4. Formulation of timbre effect 

Sounds may be generally characterized by pitch, loudness and 
quality. Sound quality or timbre describes those characteristics of 
sound which allow human ears to distinguish sounds which have 
the same pitch and loudness. Timbre is a general term for the 
distinguishable characteristics of a tone. Several timbre 
formulation methods using 1) MFCC [12], 2) harmonic lines of the 
harmonic sound [13] and 3) combination of harmonic, vibrato and 
attack-decay envelope of the sound [11] are proposed in literature. 
All these components seem to be important in timbre formulation 
and we formulate timbre effect through fusion of these methods. 
We build 4 systems using OFCCVIB, OFCCHAR, MFCC and LFCC 
features for each of SingVD and SingerID. We consider each 
system as an ‘expert’. We combine these experts to achieve 
timbre-motivated effect. In this fusion, we weight better experts 
more than others based on their prior performance. To recognize 
the timbre of a tone, it takes duration of about 60ms. If a tone is 
shorter than 4ms, it is perceived as an atonal click [11]. 

3. VOCAL DETECTION  

Vocal detection errors can affect SingerID performance. We 
formulate the vocal detection using the following hypothesis test 
[21]. The following likelihood ratio and a threshold are used for 
vocal detection decision verification. 

Accept

Rejec

( | )
( | )

v

n

t

p O
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        (1) 

where v  and n denotes vocal and nonvocal models 
respectively. And, O  is the sequence of input feature vectors 
representing a song segment. False alarms are removed by using 
higher threshold .

4. EXPERIMENTS 

We compile 6 different data sets as listed in Table 1. The databases 
in SingerID include songs from 12 solo singers [7]. 

Table 1.  Number of songs in the 6 data sets 
Systems TrainDB DevelopmentDB TestDB 
SingVD 35 25 45 
SingerID 48 25 36 

The 6 song databases do not overlap. Each song is annotated 
manually to obtain the vocal and nonvocal segments to provide the 
ground truth labels. These labels are used for performance 
benchmarking in SingVD.

Several experiments are conducted to observe the different types 

of timbre-motivated effect. In theory, timbre is a universal feature 
and can be used to identify different audio types. Hence, all 
formulations of timbre-motivated effects are used in both SingVD 
and SingerID systems. We use the continuous density HMM with 
four states and two Gaussian mixtures per state for all HMM 
models in our experiments. As mentioned in Section 3, duration of 
about 60ms is necessary to recognize a timbre of a tone. Hence, 
each of 4 features listed in 1st column of Table 2 is derived at 6 
different window sizes: 15ms, 25ms, 35ms, 45ms, 55ms and 65ms. 
Frame rate of 10 ms is used for all window sizes. Four individual 
feature systems and four fused feature systems are built for each of 
the 6 window sizes. For brevity, we give each system a reference 
name as in Table 2. 

Table 2. Choice of features and their systems 
Individual
Feature 

System Timbre-motivated 
Feature Fusion 

System 

MFCC F1 F3 + F4 T1 
LFCC F2 F1 + F3 + F4 T2 
OFCCVIB F3 F2 + F3 + F4 T3 
OFCCHAR F4 F1 + F2 + F3 + F4 T4 

When fusing systems, the individual system is weighted based 
on their prior performance. The weights are obtained through the 
Development data set. 

For SingVD system, we train three models, 

{ , , }M F I
SingVD v v n , each for male vocal, female vocal 

and nonvocal sound using TrainDB. The average error rates for 4 
individual systems (F1, F2, F3 and F4) and 4 timbre-motivated 
fusion systems (T1, T2, T3 and T4) are presented in Figure 4 
where SingVD error rates (ER) are computed in 20ms frames.   

Figure 4.  Average error rates on TestDB of SingVD system 
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Figure 5. Receiver Operating Curve (ROC) to select high 
confidence vocal segments

In SingerID experiments, we extract high quality vocal 
segments by using those segments of high confidence. Using
equation (1), we draw ROC curves (Figure. 5) of vocal and 
nonvocal classes using DevelopmentDB. Then, we select samples 
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with high level of confidence by discarding some unsure samples 
failing below the threshold as shown in Figure 5. The threshold to 
select the high confidence vocal segments is 500 which give FAR 
of 7.7%. We use the selected samples to conduct SingerID 
experiments. We train an HMM model for each singer using 
TrainDB. The average error rates for 4 individual systems (F1, F2, 
F3 and F4) and 4 timbre-motivated fusion systems (T1, T2, T3 and 
T4) for 6 window sizes for SingerID system are presented in 
Figure 6. The weights for timbre-motivated system fusions are 
determined using DevelopmentDB of SingerID. During 
identification, a SingerID decision is made on every 5 to 10 
seconds test segment. SingerID error rates (ER) are computed on 1 
second segments. 

Figure 6.  Average error rates on TestDB of SingerID system 

The results in Figures 4 and 6 shows that timbre-motivated 
fusions, T3 and T4, perform the best among other features and 
fusion systems for both of SingVD and SingerID respectively. The 
average error rates (ER) are 17.2 % and 13.3% respectively. These 
systems outperform previously reported F2 (for SingVD) [20] and 
F3 (for SingerID) [7] systems. The timbre-motivated fusion 
systems, T1, T2, T3 and T4, in general give better results than 
individual systems. Among fusion systems, T3 and T4 perform 
better than T1 and T2 fusions. It can be conjectured from the 
results that timbre effect can be better formulated by fusing not 
only harmonic, vibrato and attack-decay envelope of the sound (T2 
system [11]) but also MFCC (F1) and LFCC (F2) together. As for 
further analysis of the results, ERs are the lowest at 45ms window 
size for both of SingVD and SingerID. Hence, we believe that 
longer window size is suitable to extract timbre characteristics 
from a music signal.  

T3 system (45ms window size) that use vocal segment selection 
method achieve 13.3% ER in SingerID (Figure 6). To show the 
effect of selecting high confidence vocal segments, we re-run the 
experiments T3 (45ms window size) without selection. It gives an 
ER rate of 15%. Hence, vocal segment selection method helps to 
reduce ER by 1.7% or 11.3% relative ER reduction. 

5. CONCLUSIONS 

We have presented an approach for fusion of timbre-motivated 
features, which is found effective in both SingVD and SingerID 
systems. The contributions of this work include: 1) we formulate 
timbre motivated effects by fusing features of vibrato, harmonic, 
MFCC and LFCC in several combinations. 2) we employ 
statistical method for selecting vocal segments with high 
confidence measure for SingerID. 3) we show that high quality 
vocal detection is desired for SingerID.
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