
ALGORITHM AND ARCHITECTURE DESIGN OF CACHE SYSTEM FOR MOTION 
ESTIMATION IN HIGH DEFINITION H.264/AVC 

 
Wei-Yin Chen, Li-Fu Ding, Pei-Kuei Tsung, and Liang-Gee Chen 

 
DSP/IC Design Lab, Graduate Institute of Electronics Engineering, 

National Taiwan University, Taipei, Taiwan 
Email: {cvictor, lifu, iceworm, lgchen}@video.ee.ntu.edu.tw 

 
ABSTRACT 

 
High Definition (HD) video compression enables vivid re-

production of scenes. However, Motion Estimation (ME) re-
quires large memory capacity and huge memory bandwidth, 
which are undesirable in many platforms including ASIC and 
SoC. In this paper, an algorithm and architecture design of 
cache system and fast ME in HD H.264/AVC are proposed. 
With the proposed cache system and hardware-oriented fast 
ME algorithm, the rate-distortion performance is maintained 
within 0.03dB difference, the size of on-chip memory reduced 
to only 10% to 21% of original size, while the external memory 
bandwidth from cache refill is also 18% to 56% less than that 
of level C data reuse scheme with vertical 64 search range. 
 

Index Terms— Video coding, Cache memories, Motion 
analysis, Motion Estimation, H.264/AVC 

1. INTRODUCTION 

With the emerging need of high quality multimedia communi-
cation, Joint Video Team (JVT) proposed H.264/AVC [1] as 
the next generation video coding standard, which achieves very 
high coding efficiency. H.264/AVC can be used in enormous 
applications such as video conferences, HD/Blu-ray disks, 
camcorders, home theater, and so on so forth. 

H.264/AVC introduces several useful features, by which 
the extraordinary coding efficiency could be achieved [2]. 
However, these new coding tools greatly increase the computa-
tional complexity and memory requirement, thus make this 
standard harder to be adopted. Among them, Motion Estima-
tion (ME) is one of the most powerful tools in terms of coding 
efficiency, but it also consumes most of the total computation 
and memory requirement, including memory capacity and 
memory access [3]. 

Many works are proposed to achieve the same coding effi-
ciency while keeping the cost down. ME algorithms have been 
an important research issue for a long time, and using scratch 
memory as search range (SR) buffer to save external memory 
bandwidth is also a widely adopted methodology [4]. However, 
as the video resolution increases, the previous methods de-
scribed in [4] can hardly keep pace, and solely the SR memory 
can dominate the chip area [5][6]. 

In this paper, we introduce a novel cache system and fast 
ME algorithm. The main considerations of a video coding sys-
tem, such as rate-distortion performance, computational com-
plexity, on-chip memory size, and external memory bandwidth, 
are taken care of. Based on the proposed system, the on-chip 
memory size is greatly reduced, while the other properties are 
kept in the same level. 

The rest of the paper is organized as follows. In section 2, 
the problem of SR memory is outlined. Section 3 describes the 
detail of the proposed method and hardware architecture. Sec-
tion 4 and 5 address our simulation results and conclusion re-
marks. 

2. PROBLEM STATEMENT 

Assuming we want to encode a video sequence with 1080p 
resolution, 60 frames per second, and we use 128 64 search 
range, level C data reuse scheme [4], bi-directional frames (B-
frames), then the on-chip SR memory would contain  
(128 2+16) (64 2+16) 2 pixels, which occupies 78KB of on-
chip SRAM, and the external memory bandwidth would be 
2.13GB/s. Nevertheless, for a high-end SoC system running at 
200MHz with a fairly wide 128-bit memory bus, the throughput 
can only achieve 3.2GB/s at 100% bus utilization. As we can 
see, the bus bandwidth budget is tight even on a high-end SoC 
system, not to mention the overhead of large on-chip SRAM 
area. 

Previous work shows that the SR utilization is only 30% 
on CIF video, and it decreases to 15% on D1 video [7]. That is 
to say, many data read to the SR buffer are never used. Further 
investigation reveals the trend of low utilization still applies to 
HD video. However, if we try to save on-chip memory by di-
rectly shrinking the search range, the rate-distortion (RD) per-
formance would be greatly hurt. Therefore, a smarter strategy to 
reduce on-chip memory usage without sacrificing the coding 
efficiency is desirable. 

Moreover, when the video resolution gets higher, the ratio 
of (cache size/level C buffer size) can be smaller. From the 
work in [7], if we want a reasonable RD performance, cache 
size is 1/3 of level C buffer size for D1 video, and the ratio is 
2/3 for CIF video. From this trend, we can expect the ratio be 
smaller on HD video. As a result, it makes more sense to utilize 
cache-based architecture on HD video coding systems. 

21931-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



ME
Engine

Cache
Controller

Off-chip memory with reference frame

System Bus

Data
memory

Tag
memory

Data

Valid
IsValid

Prefetch
Request

request responce  
Fig. 1 Hardware architecture of proposed system 

3. PROPOSED ALGORITHM AND ARCHITECTURE 

In this paper, we introduce a novel cache system, which is de-
dicatedly designed for the access pattern on reference frames, 
and a cache-aware fast ME algorithm, which adjusts its own 
behavior according the state of our cache system. The system 
architecture is shown in Fig. 1. 

3.1 Cache System Design 

Since the data access on reference frames are all rectangular in 
ME stage, so should the addressable unit on cache. In most 
high-end ME architectures, calculating 8 to 64 candidates per 
cycle is essential for the Integer Motion Estimation (IME) stage 
[5], so the memory banks should be abundant and interleaved 
so adjacent blocks belong to different banks. 

In order to gain high bus utilization, transmitting data in 
burst mode with appropriate length is important. In a typical 
SoC system, a reading request in burst mode generally takes 20 
to 40 cycles. Assuming the bus is 64-bit wide, its peak 
throughput is 8 bytes per cycle, so it can load a whole 16-by-16 
MB in 32 cycles. Thus, this consideration make MB-sized 
block a suitable shape for a cache line. 

In this cache system, the reference frame is addressed by 
the relative x and y coordinates. The lower bits are used as the 
address of the cache, and the bits higher than the address space 
of cache will be used as tags. The set-associativity of this cache 
system can also vary from directly-mapped to fully associative. 
We denote the configuration in width  height  ways represen-
tation. For example, for a 128 128 2 cache and a 512 512 
motion vector (MV) limitation, a MV can be split as follows. 
The least significant two bits in x and y coordinates are for 
quarter pixel, the higher 4 bits for the address within a cache 
line, the higher 3 bits for the address of cache, and the highest 
2 bits are the tag. So the cache has 6-bit address and 4-bit tag. 

Due to the moving window style of access pattern on the 
reference frames, we use a static replacement policy that gives 
left-hand side blocks lower priority because the window moves 
to the right. If two blocks share the same x-coordinate, then we 
compare y-coordinate and evict the top one. This static re-
placement policy makes the architecture simpler because we 
only need to decide which one to evict when we do a refill, not 
when we read the data. To accommodate the static replacement 
policy, the cache should be invalidated when the current MB 
changes row. 

Reference frame

Reference frame
Hinting candidates

Refine range

software-based

cache-friendly

16x16
8x8

16x16,
reused by 4 8x8

 
Fig. 2 Memory access pattern of ME algorithms on search range 

The hardware of our cache system consists of an on-chip 
SRAM for actual data, a smaller memory for tags, and a regis-
ter file for valid bits. The priority is solely dependent on the 
tags, so no additional information is required. 

3.2 Fast ME Algorithm for Cache System 

In a software implementation of ME, it is easy to adopt algo-
rithms with lots of data dependencies without huge overhead. 
This property is derived from the sequential nature of proces-
sors and sophisticated general-purposed cache system. 

A typical software-based ME algorithm for a single MB is: 
1. For all the block types, do step from 2 to 5. 
2. Take zero-vector, motion vector predictor (MVP) defined 

in H.264/AVC, and the final MVs from spatial and tem-
poral neighboring MBs that have already done ME as 
hinting candidates. If the current block type is sub 16-by-
16, then MVs from other sub-blocks within the current 
MB can also be used. 

3. Evaluate the cost of all the hinting candidates; choose the 
candidate with lowest cost as the origin of refinement. 

4. Do a certain type of fast search beginning from the origin 
of refinement. Find the location with minimum cost with-
in search range. 

5. Refine the final result by doing the fractional motion es-
timation (FME) around the minimum point. 

In the given algorithm, the hinting candidates of a sub-
block depend on the IME refinement results of other sub-
blocks. This data dependency prevents further data reuse and 
makes prefetching much harder. As a result, we propose a 
cache-friendly ME algorithm. 

As for the data flow, we break the dependency between 
sub-blocks within the same MB, so the access pattern is more 
regular, as we can see in Fig. 2. The origin of refinement mere-
ly depends on the result of the 16-by-16 MB, and all the sub-
blocks just reuse the partial sum of absolute difference (SAD) 
values. The access pattern would almost be identical to that of 
the software-based ME without enabling variable block sizes 

2194



(VBS), but the RD performance would not be harmed as much, 
which can be verified in the simulation results. 

Cache-awareness is achieved by out-of-order execution of 
evaluating the hinting candidates. Since the order to evaluate 
the hinting candidates doesn’t matter, the ME core could 
choose the ready candidates first, while prefetching other can-
didates in the background. 

3.3 Prefetching Algorithm 

Designing and evaluating prefetching algorithm require accu-
rate timing information, so the MB-pipeline we used will be 
introduced briefly first. Four stage MB pipeline is adopted in 
our work, and they are: IME, FME, Intra coding/Motion Com-
pensation (MC), and deblocking/entropy coding [8]. According 
to our cache-aware fast ME algorithm, it is easier to do data 
prefetching. Since the hinting points are from the neighboring 
MBs, the latest hint would be available when the left-hand side 
MB finishes its IME refinement, which is around the same time 
as current MB starts its IME stage. Accordingly, the hinting 
point from the left MB is the only hint that might not be pre-
fetched soon enough, but the PEs can process other hinting 
points first as described in previous subsection. On the other 
hand, the origin of refinement does depend on the cost of all 
the hinting points, and they are all in the same IME stage. To 
resolve this issue, we speculate the result, and do prefetching 
over the speculated refinement range. 

4. SIMULATION RESULTS 

4.1 Experimental setup 

In this paper, we use a software platform to encode H.264/AVC 
video. The testing raw sequences are all in 720p and 1080p 
resolution. 

The parameters of the encoder are listed below. 
Num. of reference frames 1 
Group of Picture (GOP) 
structure 

I(bBbP)*, 
i.e. P-frame period is 4 

Total frames 33 (8 GOPs) 
Quantization parameter (Qp) 20, 21, 30 and 31 
Entropy coder CABAC 
High complexity mode Disabled 
Sub 8x8 modes Disabled in proposed 

algorithm 
ME algorithm Full search 
Refinement range 16 pixels 

Table 1. Parameters of encoder 

Only the first frame is encoded as intra-frame, and only P-
frames are used to analyze the bandwidth. The two consecutive 
Qps are used for RD curve interpolation, so that the PSNR drop 
can be fairly compared at the same bitrate. Sub 8x8 modes are 
disabled because it is not very helpful in HD video. Figures of 
720p or Qp 20 are not listed here due to the limited space. Re-
sults with Qp 20 and Qp 30 give the same conclusion. 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

sub8x8 proposed 16x16 only

PS
N

R 
di

ff
er

en
ce

 w
it

h 
an

ch
or

 (
P8

)

blue_sky

pedestrian_area

riverbed

rush_hour

station2

toys_and_calendar

tractor

vintage_car

walking_couple

 
Fig. 3 Rate-distortion performance of different ME algorithms 

4.79 4.74
6.11

0

2

4

6

8

10

12

14

16

proposed 16x16 only P8
BW

 r
at

io

blue_sky

pedestrian_area

riverbed

rush_hour

station2

sunflower

tractor

toys_and_calendar

vintage_car

walking_couple

AVERAGE

 
Fig. 4 External bandwidth of different ME algorithms  

on 64 64 2 cache 

4.2 Explorations 

Four ME algorithms, software-based with all VBS modes (la-
beled as sub8x8), software-based without sub 8-by-8 blocks 
(P8), software-based without any VBS modes (16x16 only), 
and cache-based algorithm (proposed), are compared. 

The size of SR memory of level C data reuse scheme for 
one reference frame is 38KB, so cache size of 32KB is used as 
an upper bound reference. ME refinement with 16-pixel search 
range requires a 48-by-48 pixel buffer, and that is already larger 
than 2KB, so 4KB is our lower bound of cache size. We denote 
the configuration in width  height  ways representation. The 
chosen four configurations are 64x64, 128x64, 64x64x2, and 
256x128, and the sizes are 4KB, 8KB, 8KB, and 32KB respec-
tively. 

Bandwidth ratio is defined as (bandwidth require-
ment)/(current frame size). For example, bandwidth ratio 9 
means the bandwidth spent on loading the reference frame is 9 
times larger than loading the current frame. 

4.3 Results 

We show the PSNR drop of four different ME algorithms in 
Fig. 3. The Y-axis is the PSNR difference with the anchor, P8, 
so P8 is not plotted. It is obvious that enabling sub8x8 modes is 
not useful, and using the cache-based algorithm doesn’t affect 
the PSNR much. 

2195



7.42

5.30 4.79 4.38

0

2

4

6

8

10

12

14

16

18

64x64      
(4KB)

128x64   
(8KB)

64x64x2 
(8KB)

256x128      
(32KB)

BW
 r

at
io

blue_sky

pedestrian_area

riverbed

rush_hour

station2

sunflower

tractor

toys_and_calendar

vintage_car

walking_couple

AVERAGE

 
Fig. 5 External bandwidth of proposed ME algorithm  

on different cache architectures 

18,896 19,442

0

10000

20000

30000

40000

50000

60000

out-of-order original

M
is

s 
co

un
t

blue_sky

pedestrian_area

riverbed

rush_hour

station2

sunflower

tractor

toys_and_calendar

vintage_car

walking_couple

AVERAGE

 
Fig. 6 Miss count reduction in the hinting point evaluation stage 

by out-of-order execution 

The external memory bandwidth of three ME algorithms 
are provided in Fig. 4. The cache configuration used here is 64
64 2. The bandwidth of P8 is 28% higher than proposed on 
average. Combining Fig. 3 and Fig. 4, we can see the proposed 
cache-based ME algorithm uses bandwidth as small as “16x16 
only”, while keep similar quality as “P8”. 

The external memory bandwidth of four different cache 
architectures are shown in Fig. 5. With vertical 64 searching 
range, the bandwidth ratio of level C data reuse scheme is 9. 
Since the refinement range is 16 pixels, the bandwidth ratio has 
a lower bound of 3 when the whole frame shares the same MV. 
From this figure, bandwidth ratio of configuration 64 64 2 is 
always smaller than 9, and the average is 4.79, proving the ef-
fectiveness of our cache architecture. For 720p sequences, the 
average is 3.93, and the maximum is 6.37. In addition, out-of-
order execution can further decrease the misses in the hinting 
point evaluation stage. The result shown in Fig. 6 is the com-
parison of proposed algorithm with and without out-of-order 
execution, and the cache configuration is 64 64 2. The average 
miss count is reduced by 3% after enabling out-of-order execu-
tion. 

5. CONCLUSION 

In this paper, the algorithm and architecture of cache system 
and fast ME for HD H.264/AVC are proposed. Compared with 
software-based algorithm, the proposed cache-friendly ME 
algorithm running on top of the proposed cache system reduces 

the external memory bandwidth by 8.5% and 21% for 720p and 
1080p sequences on average, while the rate-distortion drop is 
less than 0.03dB and 0.02dB. Comparing the cache-based sys-
tem and the original level C data reuse scheme, the on-chip 
memory size is reduced to 21%, and the external memory 
bandwidth is also decreased by 56% and 47% for 720p and 
1080p sequences on average. For a cache with only 10% the 
level C size, the bandwidth reduction is 50% and 18% respec-
tively. Out-of-order execution further decreases the miss count 
of hinting candidates by 3%. 

6. REFERENCES 
[1] Draft ITU-T Recommendation and Final Draft International 

Standard of Joint Video Specification, ITU-T Rec.H.264 and 
ISO/IEC 14496-10 AVC, Joint Video Team, May 2003. 

[2] Wiegand, T., Sullivan, G.J., Bjntegaard, G., Luthra, A., 
"Overview of the H.264/AVC video coding standard," Cir-
cuits and Systems for Video Technology, IEEE Transactions 
on , vol.13, no.7, pp. 560-576, July 2003 

[3] YH. Chen, T.C. Chen, and L.G. Chen, "Hardware oriented 
content-adaptive fast algorithm for variable blocksize integer 
motion estimation in H.264," Proc. Int. Symp. on Intell. Sig-
nal Processing and Commun. Syst. (ISPACS), pp. 341-4, 2005. 

[4] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse 
and memory bandwidth analysis for full-search block-
matching VLSI architecture,” IEEE Trans. Circuits Syst. Vid-
eo Technol., vol. 12, no. 1, pp. 61–72, Jan. 2002. 

[5] Z. Liu, Y. Song, M. Shao, S. Li, L.F. Li, S. Ishiwata, M. Na-
kagawa, S. Goto, T. Ikenaga, “A 1.41W H.264/AVC REAL-
TIME ENCODER SOC FOR HDTV1080P” 2007 Symposium 
on VLSI Circuits Digest of Technical Papers 

[6] Y. W. Huang, et al., “A 1.3TOPS H.264/AVC single chip 
encoder for HDTV applications,” ISSCC Dig. Tech. Papers, 
pp. 128-129, Feb. 2005. 

[7] C.Y. Tsai, C.H. Chung, Y.H. Chen, T.C. Chen, L.G. Chen, 
"Low Power Cache Algorithm and Architecture Design for 
Fast Motion Estimation in H.264/AVC Encoder System," 
ICASSP 2007. IEEE International Conference, vol.2, no., 
pp.II-97-II-100, 15-20 April 2007 

[8] T.C. Chen, Y.W. Huang, L.G. Chen, "Analysis and design of 
macroblock pipelining for H.264/AVC VLSI architecture," 
Circuits and Systems, 2004. ISCAS '04. Proceedings of the 
2004 International Symposium on , vol.2, no., pp. II-273-6 
Vol.2, 23-26 May 2004 

2196


