
JOINT ALGORITHM/CODE-LEVEL OPTIMIZATION OF H.264 VIDEO DECODER FOR
MOBILE MULTIMEDIA APPLICATIONS

Ting-Yu Huang1, Guo-An Jian1, Jui-Chin Chu1, Ching-Lung Su2, 3, and Jiun-In Guo1

1Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan, R.O.C.
2Department of Electronic Engineering, National Yunlin University of Science and Technology, Yun-lin 640, Taiwan, R.O.C.

3SoC Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C.
1E-mail: {htyu95m, chienka, cjc, jiguo}@cs.ccu.edu.tw, 2E-mail: kevinsu@yuntech.edu.tw

ABSTRACT

In this paper, we propose a joint algorithm/code-level
optimization scheme to make it feasible to perform real-time
H.264/AVC video decoding software on ARM-based platform for
mobile multimedia applications. In the algorithm-level
optimization, we propose various techniques like fast interpolation
scheme, zero-skipping technique for texture decoding, fast
boundary strength decision for in-loop filtering, and pattern
matching algorithm for CAVLD. In the code-level optimization, we
propose the design techniques on minimizing memory access and
branch times. The experimental result shows that we have reduced
the complexity of H.264 video decoder up to 93% as compared to
the reference software JM9.7. The optimized H.264 video decoder
can achieve the QCIF@30Hz video decoding on an ARM9
processor when operating at 120MHz clock.

Index Terms— Video coding, Optimization methods

1. INTRODUCTION

H.264/AVC [1] video coding standard provides up to 50% in
bit-rate savings as compared to MPEG-4 advance simple profile for
the same video quality, which is resulted from the fact that
H.264/AVC has exploited some advanced video coding techniques,
such as variable size block motion estimation and compensation,
multiple reference frames prediction, enhanced entropy coding,
intra prediction, in-loop filtering, and etc. However, the outstanding
performance of H.264 comes along with the overhead of extremely
high algorithmic complexity, which makes it too difficult to be
realized for mobile multimedia applications with low-power
consumption.

Fig. 1 shows the block diagram of the H.264 baseline video
decoding process. It begins to decode the compressed bitstream by
the entropy decoder to produce a set of quantized coefficients.
After inverse quantization (IQ) and inverse transform (IT), the
quantized coefficients will be translated into a series of residual
blocks. Using the header information decoded from the bitstream,
the H.264 decoder creates a prediction block from motion
compensation (MC) or intra-prediction. The prediction block is
added to the residual block, and then the result will be filtered by
the de-blocking filter to produce the decoded blocks.

Driven by the progress of science and technology, multimedia
applications on mobile devices are getting more and more popular
[3-6]. However, the embedded processors used in the mobile
devices don’t have enough computation power to realize the
complex H.264 video decoder in real-time. Therefore, efficient
code optimizing becomes a necessity when developing the
multimedia software executed on these devices. Before doing
optimization on the H.264 decoder, we analyze the complexity
profiling results for H.264 to identify the computation-intensive
parts. We use the ARM Developer Suite (ADS) as the profiling tool
to evaluate the software performance and obtain the complexity

profiling results on the H.264 reference decoder (JM) and the
proposed H.264 decoder. In the profiling, we adopt the encoded
QCIF, 1I14P, 256Kbps Foreman sequence with 300 frames. Table 1
shows the percentage of the complexity in some significant
functions in H.264. According to Table 1, the major
time-consuming modules of JM9.7 decoder [2] include
interpolation, in-loop deblocking filter, and entropy decoder. This
result shows us a direction in reducing the computational
complexity of H.264 video decoder in this paper.

In order to overcome the design challenges of realizing the
complex H.264 video decoder on embedded processors, we
propose a joint algorithm/code-level optimization scheme to make
it feasible to realize real-time H.264/AVC video decoding on an
ARM-based platform for mobile multimedia applications. In the
algorithm-level optimization, we propose various techniques like
fast interpolation scheme, zero-skipping technique for texture
decoding, fast boundary strength decision for in-loop filtering, and
pattern matching algorithm [3] for CAVLD. In the code-level
optimization, we propose the design techniques of minimizing
memory access and branch times. According to the proposed
techniques, we have reduced the complexity of H.264 video
decoder up to 93% as compared to the reference software JM9.7.
The optimized H.264 video decoder can achieve the QCIF@30Hz
video decoding on an ARM9 processor when operating at 120MHz
clock. We also compare our decoder with existing H.264 decoder
[7] whose performance is measured by Intel VTune on Intel P4
2.0GHz CPU. According to experimental results, we have about
10%~30% improvement compared with [7].

Fn-1
(reference)

MC

Intra
Prediction

Inter

Intra

Entropy
decoderIQIT+

+
F`n

(reconstructed)
De-blocking

Filter NAL

Fig. 1. Block diagram of the decoding process for H.264 baseline profile

Table 1. Complexity profiling for key functions in H.264
Function name Occupied complexity percentage

MC (Interpolation) 37%
Deblocking Filter 20%
Entropy Decoder 18%
Inverse Transform 4%

MC (Reconstruction) 3%
Inverse Quantization 3%

Intra Prediction 3%
Others 12%

The rest of this paper is organized as follows. The proposed
design techniques for optimizing H.264 video decoder will be
described in Section 2. Then, the experimental results are discussed
in Section 3. Finally, we conclude this paper in Section 4.

21891-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

2. PROPOSED SOFTWARE OPTIMIZATION
METHODOLOGY

In order to realize H.264 video decoding in real-time, we
propose some optimization techniques from the aspect of joint
algorithm-level/code-level optimization. In the following, we will
describe the proposed techniques from the two different aspects in
more details.

2.1 Code-Level Optimization

2.1.1 Memory access minimization

Memory access will cost considerable waiting cycles in
executing the H.264 video decoder since the access time for
memory is much longer than that for registers. Due to this reason,
we have tried to minimize the frequency of memory access as most
as possible. Let us take the decoding flow shown in Fig. 2(a) for
example. The results of interpolation will be stored in a temporary
buffer first. Then they will be added with residual data and moved
into frame buffer when residual data are available. This fact suffers
from additional memory access. Hence, we modify the decoding
flow as shown in Fig. 2(b). The results of interpolation will directly
be added with residual data and stored in frame buffer to reduce the
memory access.

CAVLD

IQ

IT
Interpolation

Temp Buffer

Frame
Buffer

CAVLD

IQ

IT

Interpolation

Frame
Buffer

(a)Original decoding flow (b)Modified decoding flow
Fig. 2. Modifying H.264 decoding flow to reduce memory access

On the other hand, the reference software of H.264, i.e. JM9.7,
has a bad coding style. The original C code for the function
“showbits” of CAVLD is shown as below. This function only
processes one bit at a time so that it needs to access external
memory frequently. We modify it by partitioning it into three cases
as shown in Fig. 3. Therefore, we can process several bits at one
time in CAVLD, which reduces the complexity from O(n) to O(1).

while (numbits--){
 inf <<=1;
 inf |= ((*(buffer)>>bitoffset--) & 0x01) ;
 if (bitoffset < 0){
 buffer++;
 bitoffset = 7;
 }
 }
 return inf;

(Bitstream in one byte)

(Bitstream in two byte)

(Bitstream in three byte)

Fig. 3. Modifying the “showbits” in CAVLD for low memory access

After memory access minimization, the total computation of
H.264 decoder is reduced about 10%, which shows that good

software structure will improve the performance.

2.1.2 Branch minimization

In general, branch instruction will make processor stall its
pipeline so that execution will be disturbed. For improving the
execution efficiency, we minimize the number of branches as most
as possible. For example, a 6-tap filter is adopted in luminance
interpolation. Before doing filtering, the H.264 JM software checks
if the reference pixels are within the memory boundaries. This
operation causes a lot of redundant branches because not all
interpolation operations are needed to do boundary checking. Fig. 4
shows the idea to reduce the boundary checking. We partition a
macroblock into two parts. In the white part of area, all
interpolation operations in this area do not need to do boundary
checking. On the other hand, all interpolation operations in the
black area have to check boundary first.

Using this technique has reduced about 85% and 90% branch
instructions of interpolation in QCIF and CIF format videos, which
amounts to totally 22% reduction in complexity of H.264 decoder.

should check
Not to check

Fig. 4. Reducing boundary checking

2.2 Algorithm-Level Optimization

2.2.1 Reducing multiplications in luminance interpolation

According to the profiling result, luminance interpolation
occupies a large portion, i.e. 25% of computation in H.264 video
decoding. The coefficients for the 6-tap filter are defined in
equation (1) and the formula of luminance interpolation is defined
in equation (2).

{ }1 ,5 ,20 ,20 ,5 ,1 −− (1)

FEDCBA +−++− 520205 (2)

Fig. 5 shows the luminance interpolation for half-pixels. We
observe that the 6-tap filter has symmetric coefficients so that some
of multiplications can be reduced. Equation (3) shows the modified
formula.

5))2)(()((×<<+−+−+ DCEBFA (3)

The original equation needs five additions and four
multiplications while the modified equation (3) just needs five
additions, one shift, and one multiplication. It reduces about 13%
of computation in H.264 video decoder.

A G

B H

M N C I Q R

O P D J S T

E K

F L

a
d

ce
b

Fig. 5. Luminance interpolation with symmetry for half-pixels

2190

2.2.2 Simplifying chrominance interpolation

H.264 uses a bilinear approach to do chrominance
interpolation. As shown in Fig. 6, the chrominance prediction value
p is calculated as weighted average of four neighboring integer
samples A, B, C, and D. The formula of chrominance interpolation
is defined as equation (4). Here dx and dy denote the offsets of
location in fraction-sample units.

6)32)8(
)8()8)(8((

>>++−+
−+−−=

dxdyDdyCdx
BdydxAdydxp (4)

According to the formula, a lot of multiplications are needed

in chrominance interpolation. By observing the dx and dy, we
found that all the dx and dy are the same in 8 8, 8 16, 16 8 and 16

16 block modes. This means many redundant multiplications can
be reduced. Table 2 shows the occurrence probability of the modes
for Foreman video with different video resolutions.

A

C

B

D

dx
p

8-dx

dy

8-dy

Fig. 6. The chrominance interpolation in H.264

After simplifying chrominance interpolation for the blocks

larger than 8 8, we eliminate most computation in chrominance
interpolation and amount to about 7% reduction of complexity in
H.264.

Table 2. Probability of block type
Foreman 8×8 above 8×8 below

QCIF 87% 13%
QVGA 89% 11%

CIF 90% 10%

2.2.3 Zero-value residual block skipping

In the process of block reconstruction, the occurrence of zero
value in the residual blocks means computation can be reduced. As
shown in Table 3, we have performed some analysis for zero
occurrences in inverse transform. According to the analysis, we
observe the average probability for the occurrence of zero blocks is
about 80%. It means about 80% of inverse transform and inverse
quantization can be skipped in different sequences. Thus, we add a
mechanism to detect zero blocks. As shown in Fig. 7, both inverse
transform and inverse quantization can be skipped if the all-zero
block is detected. Furthermore, the summation of residual blocks
and predicted blocks in the final step of block reconstruction can
also be skipped.

According to the simulation result, adopting the zero-value
residual block skipping can totally reduce 6% of complexity.

Interpolation

CAVLD

All zero
block?

Frame
Buffer

Yes

IQ

IT

No

Interpolation

Fig. 7. Zero-value residual block skipping

Table 3. Analysis for the occurrence of all-zero blocks
Test pattern Probability

Foreman 86%
Akiyo 80%

Coastguard 68%
Stephen 80%

2.2.4 Deblocking stripe skipping

In H.264, deblocking function is used to remove the block
effect especially for the video encoded in low bit-rate. This process
can be partitioned into two parts. The first one is getting BS
(boundary strength) and the second one is to do filtering on block
boundaries. In getting BS, we found that the strength of four pixels
in one stripe within a 4 4 block is the same. We compute the BS at
the first pixel instead of entire stripe in a block, as shown in Fig. 8.

Fig. 8. The BS distribution of block

Since the BS of four pixels in one stripe will be the same, we
don’t have to apply deblocking to all pixels in the stripe if the BS
for the first pixel is zero. Table 4 shows the analysis of BS
distribution. We find the probability is about 80% when BS is zero.
After deblocking stripe skipping, we totally reduce about 19% of
complexity in H.264 decoder.

Table 4. The distribution of BS
BS Test pattern

(QCIF) 0 1 2 3 4
Foreman 77% 6.1% 8.3% 6.4% 2.2%

Akiyo 90% 1.2% 2.2% 5.1% 1.5%
Stephen 68% 8.4% 15.6% 5.8% 2.2%

Coastguard 78% 5% 9% 6% 2%

2.2.5 Building dynamic and static table for some
computation through table look-up

In many cases, the results of computation will be the same for
all frames. So we just use a look-up table to replace on-line
computation, such as the computation for the position of
macroblock and saturation.

The position of each macroblock will be calculated once
whenever the decoder begins to decode a new frame. However, any
two macroblocks in different frames that have identical number

2191

will have the same positions. So we compute them once and build a
table using table look-up to replace the computation for that
position of macroblock.

Saturation is adopted in interpolation and deblocking process.
Its functionality is to guarantee the pixel value will lie in between 0
and 255, as shown in equation (5). Here p and p’ denote the pixel
value before applying saturation and the pixel value after applying
saturation, respectively.

()()pp ,255min,0max=′ (5)

Such an operation will cost a lot of execution time due to branch
instructions. Therefore, we make a statistic analysis and get a static
table. Then we just use this look-up table and no longer adopt any
branch instructions in doing saturation. After reducing computation
by using look-up tables, we totally reduce about 13% of complexity
in H.264 decoder.

3. EXPERIMENTAL RESULTS

In this section we discuss the simulation environment and
experimental results by adopting the proposed design techniques.
Here we use ARM926EJS simulator to evaluate performance of the
proposed design. The simulator is able to report CPU core cycles
and total instructions. The CPU target frequency is set at 120 MHz.
Fig. 9 shows the summary of the proposed optimization method
improvement and Table 5 shows the frame per second (fps)
between the original version and the optimized version of H.264
decoder.

We also compare our decoder with existing H.264 decoder [7]
whose performance is measured by Intel VTune on Intel P4
2.0GHz CPU. Table 6 shows that we have about 10% to 30%
improvement in CIF resolution compared with [7].

In addition to the simulation results reported by the ADS, we
also realize the proposed H.264 decoder on Faraday’s development
board called FIE8100 [8], as shown in Fig. 10. In this platform the
processing core is named FA526 that is compatible with the ARM9
processing. Table 7 shows the real decoding frame rates on
FIE8100.

Fig.9. Summary of the improvement in the proposed algorithm

4. CONCLUSION

In this paper, we have proposed a joint algorithm/code-level
optimization scheme to perform real-time H.264/AVC video
decoding software on ARM-based platform for mobile multimedia
applications. The proposed techniques in this paper can also be
applied to other video coding standards like MPEG1/2/4, VC1, or

AVS for improving its performance when realized in embedded
processors. According to the proposed techniques, we have
obtained more than 11 times acceleration in performance by way of
optimizing the H.264 decoder in C-code level without using any
hand-written assembly codes.

Table 5. Performance on ARM926EJS simulator at 120MHz

Resolution Bitrate
(kbps)

Average fps before
optimization

Average fps after
optimization

QCIF 256 2.66 30.50
CIF 512 0.56 8.21

Table 6. Comparison of H.264 decoder implementation
Sequence [7] Ours
Foreman 63 fps 75 fps

Akiyo 75 fps 100 fps
Stefan 64 fps 71 fps

Table 7. Performance on Faraday FIE8100 board at 200MHz
Test Patterns Bit-rate(kbps) Frames per second

Foreman(QCIF) 128 27
Akiyo(QCIF) 128 33
Stefan(QCIF) 128 25
Cars(QCIF) 128 27

Fig.10. Verification of H.264 decoder on Faraday FIE8100

development board

REFERENCES

[1] ITU-T Recommendation H.264 & ISO/IEC 14496-10,
“Advanced Video Coding for Generic Audiovisual Services”,
Version 4, 2005.

[2] Available via http://iphome.hhi.de/suehring/tml/
[3] S. Y. Tseng, and T. W. Hsieh, “A Pattern-search Method for

H.264/AVC CAVLC Decoding”, IEEE International
Conference on Multimedia and Expo, pp. 1073 – 1076, Jul.
2006.

[4] V. Ramadurai, S. Jinturkar, M. Moudgill, and J. Glossner,
“Implementation of H.264 decoder on Sandblaster DSP”,
IEEE International Conference on Multimedia and Expo, Jul.
2005.

[5] M. O. Khan, U. Khan, S. A. Rahim, S. I. Ali, “Optimization of
Motion Compensation for H.264 Decoder by Pre-Calculation”,
8th International Multitopic Conference, pp. 55 – 60, Dec.
2004.

[6] J. Lou, A. Jagmohan, D. He, L. Lu, and M. T. Sun, “Statistical
Analysis Based H.264 High Profile Deblocking Speedup”,
IEEE International Symposium on Circuits and Systems, pp.
3143 – 3146, May 2007.

[7] Q. Xe, J. Liu, S. Wang, and J. Zhao,” H.264/AVC baseline
profile decoder optimization on independent platform”, 2005
International Conference on Wireless Communications,
Networking and Mobile Computing, vol. 2, pp. 1253 – 1256,
Sep. 2005.

[8] Faraday Technology Corporation, FIE8100 User Guide,
February 2005.

2192

