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ABSTRACT 

In this paper, we propose a joint algorithm/code-level 
optimization scheme to make it feasible to perform real-time 
H.264/AVC video decoding software on ARM-based platform for 
mobile multimedia applications. In the algorithm-level 
optimization, we propose various techniques like fast interpolation 
scheme, zero-skipping technique for texture decoding, fast 
boundary strength decision for in-loop filtering, and pattern 
matching algorithm for CAVLD. In the code-level optimization, we 
propose the design techniques on minimizing memory access and 
branch times. The experimental result shows that we have reduced 
the complexity of H.264 video decoder up to 93% as compared to 
the reference software JM9.7. The optimized H.264 video decoder 
can achieve the QCIF@30Hz video decoding on an ARM9 
processor when operating at 120MHz clock. 

 
Index Terms— Video coding, Optimization methods 
 

1. INTRODUCTION 

H.264/AVC [1] video coding standard provides up to 50% in 
bit-rate savings as compared to MPEG-4 advance simple profile for 
the same video quality, which is resulted from the fact that 
H.264/AVC has exploited some advanced video coding techniques, 
such as variable size block motion estimation and compensation, 
multiple reference frames prediction, enhanced entropy coding, 
intra prediction, in-loop filtering, and etc. However, the outstanding 
performance of H.264 comes along with the overhead of extremely 
high algorithmic complexity, which makes it too difficult to be 
realized for mobile multimedia applications with low-power 
consumption. 

Fig. 1 shows the block diagram of the H.264 baseline video 
decoding process. It begins to decode the compressed bitstream by 
the entropy decoder to produce a set of quantized coefficients. 
After inverse quantization (IQ) and inverse transform (IT), the 
quantized coefficients will be translated into a series of residual 
blocks. Using the header information decoded from the bitstream, 
the H.264 decoder creates a prediction block from motion 
compensation (MC) or intra-prediction. The prediction block is 
added to the residual block, and then the result will be filtered by 
the de-blocking filter to produce the decoded blocks. 

Driven by the progress of science and technology, multimedia 
applications on mobile devices are getting more and more popular 
[3-6]. However, the embedded processors used in the mobile 
devices don’t have enough computation power to realize the 
complex H.264 video decoder in real-time. Therefore, efficient 
code optimizing becomes a necessity when developing the 
multimedia software executed on these devices. Before doing 
optimization on the H.264 decoder, we analyze the complexity 
profiling results for H.264 to identify the computation-intensive 
parts. We use the ARM Developer Suite (ADS) as the profiling tool 
to evaluate the software performance and obtain the complexity 

profiling results on the H.264 reference decoder (JM) and the 
proposed H.264 decoder. In the profiling, we adopt the encoded 
QCIF, 1I14P, 256Kbps Foreman sequence with 300 frames. Table 1 
shows the percentage of the complexity in some significant 
functions in H.264. According to Table 1, the major 
time-consuming modules of JM9.7 decoder [2] include 
interpolation, in-loop deblocking filter, and entropy decoder. This 
result shows us a direction in reducing the computational 
complexity of H.264 video decoder in this paper. 

In order to overcome the design challenges of realizing the 
complex H.264 video decoder on embedded processors, we 
propose a joint algorithm/code-level optimization scheme to make 
it feasible to realize real-time H.264/AVC video decoding on an 
ARM-based platform for mobile multimedia applications. In the 
algorithm-level optimization, we propose various techniques like 
fast interpolation scheme, zero-skipping technique for texture 
decoding, fast boundary strength decision for in-loop filtering, and 
pattern matching algorithm [3] for CAVLD. In the code-level 
optimization, we propose the design techniques of minimizing 
memory access and branch times. According to the proposed 
techniques, we have reduced the complexity of H.264 video 
decoder up to 93% as compared to the reference software JM9.7. 
The optimized H.264 video decoder can achieve the QCIF@30Hz 
video decoding on an ARM9 processor when operating at 120MHz 
clock. We also compare our decoder with existing H.264 decoder 
[7] whose performance is measured by Intel VTune on Intel P4 
2.0GHz CPU. According to experimental results, we have about 
10%~30% improvement compared with [7]. 
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Fig. 1. Block diagram of the decoding process for H.264 baseline profile 

Table 1. Complexity profiling for key functions in H.264 
Function name Occupied complexity percentage 

MC (Interpolation) 37% 
Deblocking Filter 20% 
Entropy Decoder 18% 
Inverse Transform 4% 

MC (Reconstruction) 3% 
Inverse Quantization 3% 

Intra Prediction 3% 
Others 12% 

The rest of this paper is organized as follows. The proposed 
design techniques for optimizing H.264 video decoder will be 
described in Section 2. Then, the experimental results are discussed 
in Section 3. Finally, we conclude this paper in Section 4. 
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2. PROPOSED SOFTWARE OPTIMIZATION 
METHODOLOGY 

In order to realize H.264 video decoding in real-time, we 
propose some optimization techniques from the aspect of joint 
algorithm-level/code-level optimization. In the following, we will 
describe the proposed techniques from the two different aspects in 
more details. 

2.1 Code-Level Optimization 

2.1.1 Memory access minimization 

Memory access will cost considerable waiting cycles in 
executing the H.264 video decoder since the access time for 
memory is much longer than that for registers. Due to this reason, 
we have tried to minimize the frequency of memory access as most 
as possible. Let us take the decoding flow shown in Fig. 2(a) for 
example. The results of interpolation will be stored in a temporary 
buffer first. Then they will be added with residual data and moved 
into frame buffer when residual data are available. This fact suffers 
from additional memory access. Hence, we modify the decoding 
flow as shown in Fig. 2(b). The results of interpolation will directly 
be added with residual data and stored in frame buffer to reduce the 
memory access. 
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(a)Original decoding flow (b)Modified decoding flow  
Fig. 2. Modifying H.264 decoding flow to reduce memory access 

On the other hand, the reference software of H.264, i.e. JM9.7, 
has a bad coding style. The original C code for the function 
“showbits” of CAVLD is shown as below. This function only 
processes one bit at a time so that it needs to access external 
memory frequently. We modify it by partitioning it into three cases 
as shown in Fig. 3. Therefore, we can process several bits at one 
time in CAVLD, which reduces the complexity from O(n) to O(1). 

 
while (numbits--){ 
       inf <<=1;   
       inf |=  ((*(buffer)>>bitoffset--) & 0x01) ; 
       if (bitoffset < 0){ 
          buffer++; 
          bitoffset = 7; 
      } 
  } 
  return inf; 

 

(Bitstream in one byte )

(Bitstream in two byte )

(Bitstream in three byte )
 

Fig. 3. Modifying the “showbits” in CAVLD for low memory access 

After memory access minimization, the total computation of 
H.264 decoder is reduced about 10%, which shows that good 

software structure will improve the performance. 

2.1.2 Branch minimization 

In general, branch instruction will make processor stall its 
pipeline so that execution will be disturbed. For improving the 
execution efficiency, we minimize the number of branches as most 
as possible. For example, a 6-tap filter is adopted in luminance 
interpolation. Before doing filtering, the H.264 JM software checks 
if the reference pixels are within the memory boundaries. This 
operation causes a lot of redundant branches because not all 
interpolation operations are needed to do boundary checking. Fig. 4 
shows the idea to reduce the boundary checking. We partition a 
macroblock into two parts. In the white part of area, all 
interpolation operations in this area do not need to do boundary 
checking. On the other hand, all interpolation operations in the 
black area have to check boundary first. 

Using this technique has reduced about 85% and 90% branch 
instructions of interpolation in QCIF and CIF format videos, which 
amounts to totally 22% reduction in complexity of H.264 decoder. 

should check
Not to check

 
Fig. 4. Reducing boundary checking 

2.2 Algorithm-Level Optimization 

2.2.1 Reducing multiplications in luminance interpolation  

According to the profiling result, luminance interpolation 
occupies a large portion, i.e. 25% of computation in H.264 video 
decoding. The coefficients for the 6-tap filter are defined in 
equation (1) and the formula of luminance interpolation is defined 
in equation (2). 

{ }1 ,5 ,20 ,20 ,5 ,1 −−  (1)
  

FEDCBA +−++− 520205  (2)

Fig. 5 shows the luminance interpolation for half-pixels. We 
observe that the 6-tap filter has symmetric coefficients so that some 
of multiplications can be reduced. Equation (3) shows the modified 
formula. 

5))2)(()(( ×<<+−+−+ DCEBFA  (3)

The original equation needs five additions and four 
multiplications while the modified equation (3) just needs five 
additions, one shift, and one multiplication. It reduces about 13% 
of computation in H.264 video decoder. 
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Fig. 5. Luminance interpolation with symmetry for half-pixels 
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2.2.2 Simplifying chrominance interpolation 

H.264 uses a bilinear approach to do chrominance 
interpolation. As shown in Fig. 6, the chrominance prediction value 
p is calculated as weighted average of four neighboring integer 
samples A, B, C, and D. The formula of chrominance interpolation 
is defined as equation (4). Here dx and dy denote the offsets of 
location in fraction-sample units. 
 

6)32)8(
)8()8)(8((

>>++−+
−+−−=

dxdyDdyCdx
BdydxAdydxp  (4)

 
According to the formula, a lot of multiplications are needed 

in chrominance interpolation. By observing the dx and dy, we 
found that all the dx and dy are the same in 8 8, 8 16, 16 8 and 16

16 block modes. This means many redundant multiplications can 
be reduced. Table 2 shows the occurrence probability of the modes 
for Foreman video with different video resolutions. 
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Fig. 6. The chrominance interpolation in H.264 

 
After simplifying chrominance interpolation for the blocks 

larger than 8 8, we eliminate most computation in chrominance 
interpolation and amount to about 7% reduction of complexity in 
H.264. 

 

Table 2. Probability of block type 
Foreman 8×8 above 8×8 below 

QCIF 87% 13% 
QVGA 89% 11% 

CIF 90% 10% 
 

2.2.3 Zero-value residual block skipping 

In the process of block reconstruction, the occurrence of zero 
value in the residual blocks means computation can be reduced. As 
shown in Table 3, we have performed some analysis for zero 
occurrences in inverse transform. According to the analysis, we 
observe the average probability for the occurrence of zero blocks is 
about 80%. It means about 80% of inverse transform and inverse 
quantization can be skipped in different sequences. Thus, we add a 
mechanism to detect zero blocks. As shown in Fig. 7, both inverse 
transform and inverse quantization can be skipped if the all-zero 
block is detected. Furthermore, the summation of residual blocks 
and predicted blocks in the final step of block reconstruction can 
also be skipped. 

According to the simulation result, adopting the zero-value 
residual block skipping can totally reduce 6% of complexity. 
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Fig. 7. Zero-value residual block skipping 

Table 3. Analysis for the occurrence of all-zero blocks 
Test pattern Probability 

Foreman 86% 
Akiyo 80% 

Coastguard 68% 
Stephen 80% 

2.2.4 Deblocking stripe skipping 

In H.264, deblocking function is used to remove the block 
effect especially for the video encoded in low bit-rate. This process 
can be partitioned into two parts. The first one is getting BS 
(boundary strength) and the second one is to do filtering on block 
boundaries. In getting BS, we found that the strength of four pixels 
in one stripe within a 4 4 block is the same. We compute the BS at 
the first pixel instead of entire stripe in a block, as shown in Fig. 8. 

 
Fig. 8. The BS distribution of block 

Since the BS of four pixels in one stripe will be the same, we 
don’t have to apply deblocking to all pixels in the stripe if the BS 
for the first pixel is zero. Table 4 shows the analysis of BS 
distribution. We find the probability is about 80% when BS is zero. 
After deblocking stripe skipping, we totally reduce about 19% of 
complexity in H.264 decoder. 

Table 4. The distribution of BS 
BS Test pattern 

(QCIF) 0 1 2 3 4 
Foreman 77% 6.1% 8.3% 6.4% 2.2% 

Akiyo 90% 1.2% 2.2% 5.1% 1.5% 
Stephen 68% 8.4% 15.6% 5.8% 2.2% 

Coastguard 78% 5% 9% 6% 2% 

2.2.5 Building dynamic and static table for some 
computation through table look-up 

In many cases, the results of computation will be the same for 
all frames. So we just use a look-up table to replace on-line 
computation, such as the computation for the position of 
macroblock and saturation. 

The position of each macroblock will be calculated once 
whenever the decoder begins to decode a new frame. However, any 
two macroblocks in different frames that have identical number 
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will have the same positions. So we compute them once and build a 
table using table look-up to replace the computation for that 
position of macroblock. 

Saturation is adopted in interpolation and deblocking process. 
Its functionality is to guarantee the pixel value will lie in between 0 
and 255, as shown in equation (5). Here p and p’ denote the pixel 
value before applying saturation and the pixel value after applying 
saturation, respectively. 

( )( )pp ,255min,0max=′  (5)

Such an operation will cost a lot of execution time due to branch 
instructions. Therefore, we make a statistic analysis and get a static 
table. Then we just use this look-up table and no longer adopt any 
branch instructions in doing saturation. After reducing computation 
by using look-up tables, we totally reduce about 13% of complexity 
in H.264 decoder. 

3. EXPERIMENTAL RESULTS 

In this section we discuss the simulation environment and 
experimental results by adopting the proposed design techniques. 
Here we use ARM926EJS simulator to evaluate performance of the 
proposed design. The simulator is able to report CPU core cycles 
and total instructions. The CPU target frequency is set at 120 MHz. 
Fig. 9 shows the summary of the proposed optimization method 
improvement and Table 5 shows the frame per second (fps) 
between the original version and the optimized version of H.264 
decoder.  

We also compare our decoder with existing H.264 decoder [7] 
whose performance is measured by Intel VTune on Intel P4 
2.0GHz CPU. Table 6 shows that we have about 10% to 30% 
improvement in CIF resolution compared with [7]. 

In addition to the simulation results reported by the ADS, we 
also realize the proposed H.264 decoder on Faraday’s development 
board called FIE8100 [8], as shown in Fig. 10. In this platform the 
processing core is named FA526 that is compatible with the ARM9 
processing. Table 7 shows the real decoding frame rates on 
FIE8100.  

 
Fig.9. Summary of the improvement in the proposed algorithm 

4. CONCLUSION 

In this paper, we have proposed a joint algorithm/code-level 
optimization scheme to perform real-time H.264/AVC video 
decoding software on ARM-based platform for mobile multimedia 
applications. The proposed techniques in this paper can also be 
applied to other video coding standards like MPEG1/2/4, VC1, or 

AVS for improving its performance when realized in embedded 
processors. According to the proposed techniques, we have 
obtained more than 11 times acceleration in performance by way of 
optimizing the H.264 decoder in C-code level without using any 
hand-written assembly codes.  

Table 5. Performance on ARM926EJS simulator at 120MHz 

Resolution Bitrate 
(kbps) 

Average fps before 
optimization 

Average fps after 
optimization 

QCIF 256 2.66 30.50 
CIF 512 0.56 8.21 

Table 6. Comparison of H.264 decoder implementation   
Sequence [7] Ours 
Foreman 63 fps 75 fps 

Akiyo 75 fps 100 fps 
Stefan 64 fps 71 fps 

Table 7. Performance on Faraday FIE8100 board at 200MHz 
Test Patterns Bit-rate(kbps) Frames per second

Foreman(QCIF) 128 27 
Akiyo(QCIF) 128 33 
Stefan(QCIF) 128 25 
Cars(QCIF) 128 27 

 
Fig.10. Verification of H.264 decoder on Faraday FIE8100 

development board 
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