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ABSTRACT 
 

Rate Control plays an important role for video coding 
especially in video streaming applications with bandwidth 
constraints. The inherent sequential processing in H.264 basic unit 
(BU) level rate control algorithm makes it hard to be realized in a 
pipelined H.264 hardware encoder without increasing the 
processing latency. In this paper we propose a new H.264 BU-level 
rate control algorithm facilitating hardware realization. The 
proposed algorithm breaks down the sequential processing 
dependence in the original rate control algorithm in JM and 
reduces 28% for QCIF, 66% for CIF, 87% for D1 of hardware   
cycles while maintaining good video quality. Simulation results 
shows that the proposed algorithm reduces MAD’s memory buffer 
size to be Nunit * 14bits, which amounts to 26% for QCIF, 59% for 
CIF, 83% for D1 reduction as compared to JM rate control. 
Moreover, the proposed algorithm possesses high feasibility for 
hardware realization. 

 

Index Terms— H.264, Rate Control, BU Level 
 

1. INTRODUCTION 
 

In recent years, end-to-end video applications like video 
phones require stable video quality during communication between 
two parties. To achieve stable video quality, Rate Control (RC) 
plays an important role to maintain a good video quality under the 
constraint of finite varying bandwidth during video transmission. 
RC algorithms can dynamically adjust the Quantization Parameter 
(QP) values in order to achieve the specified target bitrates during 
video encoding. If you want to have high bitrates, you have to 
choose small QP values. If we disable the RC operations of a video 
encoder system, it will keep the fixed QP values and the output 
bitrates are not constant anymore. On the other hand, if we enable 
the RC operations, we will have constant bitrates in encoding 
video. Figure 1 shows the real compressed bits for the “Silence” 
sequence with RC disabling/enabling. The parameters for the RC 
operations are GOP=30, QP=24 and target bitrate=256kbps.  

In the literatures, there have been many RC algorithms 
proposed to improve the quality for H.264 video encoding. Most of 
them are derived based on quadratic Rate Distortion (RD) model. 

The reference software (JM) of H.264 video encoder adopts the 
linear model to predict the Mean Absolute Difference (MAD) 
value for solving rate control and Rate Distortion Optimization 
(RDO) problems [1-2]. However, it suffers from the QP dilemma 
problem. In order to resolve this problem, all the exiting H.264 RC 
algorithms estimate QP or MAD values by using the information of 
previous MBs [4]. 
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Figure 1.   Real bits for “Silence” sequence with disabling/enabling RC 

operations 
 

The RC algorithm of H.264 reference software JM is divided 
into three levels: i.e. Group of Picture (GOP) level, Frame level 
and Basic Unit (BU) level [1]. Among them, BU-level RC 
algorithm owns better performance in allocating the data bits than 
the frame-level RC for video encoding. There have been some 
papers proposed for H.264 RC using different levels [3-6]. All of 
these RC algorithms are implemented in software, which makes 
them hard to be realized in a pipelined H.264 video encoder design 
without increasing latency induced by the sequential RC 
processing requirement. In addition, the H.264 RC algorithm is 
much more complex than that of MPEG-4, which also induces 
high hardware cost in the hardware realization. 

In order to solve the problems induced by the RC sequential 
processing requirement and high hardware complexity, we propose 
a new H.264 BU-level RC algorithm facilitating the hardware 
realization. The proposed RC algorithm can break down the 
sequential data processing dependency, which is beneficial for 
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hardware realization in a pipelined H.264 video encoder. In 
addition, we also greatly reduce the internal memory buffer size for 
storing the MAD values, which amounts to 26% for QCIF, 59% 
for CIF, 83% for D1 reduction as compared to JM RC. This 
advantage is resulted from a new predictor model to predict the 
MAD value and target bits when it is realized in hardware. 
Moreover, the proposed RC algorithm possesses almost the same 
video quality as compared to JM. With these features, the proposed 
RC algorithm could be easily integrated with H.264 video encoder 
hardware design with low hardware complexity and high video 
quality.

The rest of this paper is organized as follows. We first 
describe the H.264 RC algorithm in Section 2. Then we illustrate 
the proposed algorithm in Section 3. The simulation results on the 
proposed algorithm are described in Section 4. Finally, we give a 
brief conclusion in Section 5.

2. H.264 RATE CONTROL ALGORITHM 

The H.264 RC algorithm is divided into three different levels, 
i.e. GOP level, frame level, and BU level. In the following sub-
sections, we will introduce the H.264 RC algorithm in more details. 

2.1. GOP Level Rate Control 
The default GOP consists of one I frame and twenty-nine P 

frames in H.264. When the jth frame in the ith GOP is coded, the 
remaining bits of the rest frames in the GOP are calculated as Eq. 
(1) shows: 
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In Eq. (1), B denotes the channel bandwidth. F is frame rate. Ni is 
the total number of frame in GOP. The ti(j-1) is the actual bits of 
the (j-1)th frame. Ri(j) is the remaining bits of the rest frames. Vi(j)
is the virtual buffer, which can be computed by Eq. (2) and 
updated each frame. More detailed information could be found in 
[1].
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2.2 Frame Level Rate Control 
The frame level rate control can be divided into two stages, i.e. 

the pre-encoding stage and the post-encoding stage, which are 
respectively illustrated in the following.

2.2.1 Pre-encoding Stage 

Each frame will compute the QP values via the following two 
steps: 

Step 1: Determine the target bits for each P frame. The target 
buffer level (Tbl) that is predefined for each frame could be 
obtained from Eq. (3): 
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where NTp is total number of P frames and Tbli(I) is the initial 
value. After encoding the first P frame of the GOP, the initial value 
is set as indicated in Eq. (4) for the updates in every GOP. 
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Then, the available target bits for the current frame are allocated as 
shown in Eq. (5) as 

(5)))()((
~

jVjTbl
F
BT iii −×+= γ

where is a weighted coefficient with the value set to be 0.5. 
Meanwhile, the average remaining bits of the current frame are 
calculated according to Eq. (6): 
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where Np is the number of the rest P frames in the GOP. The final 
target bits can be computed from )(~ jTi  and )(ˆ jTi  according to Eq. 
(7) as  
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where the is a weighted coefficient with the value set to be 0.5. 

Step 2: Compute the quantization parameter. The MAD of the 
current frame is predicted by a linear prediction model as shown in 
Eq. (8), which uses the actual MAD of the previous frame.
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where C1 and C2 are two coefficients. The initial value of C1 and 
C2 are respectively set to 1 and 0 [1]. They are updated frame by 
frame or BU by BU during encoding. Then the quantization step 
(Qstep) of the current frame can be computed according to the 
quadratic R-Q model [1-2], as shown in Eq. (9): 
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where X1 and X2 are two coefficients which [2,8,9] used. When we 
get the Qstep values, the QP values can be calculated by using the 
relationship between the quantization step and the quantization 
parameter of H.264 [1]. 

2.2.2 Post-encoding Stage 
After encoding a frame, the coefficients C1, C2, X1 and X2 

coefficients are updated [1]. 

2.3 BU Level Rate Control 
A frame is composed of Nmb MBs. A basic unit (BU) is 

composed of a group of continue Nbu MB. For example, a BU is 
composed of 4 MBs if Nbu =4. Here shows the steps for doing BU 
level rate control in JM. 

Step 1: Predicte the MAD as shown in Eq. (8) by using the 
previous frame co-located BU’s actual MAD. 

Step 2: Compute the target bits for the ith BU, as shown in Eq. (10): 
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where Rbu denotes the remaining bits of the current frame with the 
initial value set to be Ti(j). Bheader denotes the average header bits 
for all coded BU. Nunit is the number of the total BUs which can be 
obtained by Eq. (11): 
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Step 3: Compute the Qstep as shown in Eq. (9), and translate 
Qstep to QP according to the way specified in H.264 [1]. 
 

3. PROPOSED PIPELINED RC ALGORITHM 
 

The H.264 RC algorithm described in Section 2 is not good for 
hardware realization due to the inherent sequential processing 
operations. We propose a low complexity H.264 pipelined RC 
algorithm to break down the sequential data processing 
dependency for facilitating the hardware realization with good 
video coding quality. For the H.264 hardware encoder design [7] 
with pipelined control as shown in Figure 2, the H.264 BU-level 
(with BU=1MB) RC algorithm cannot be directly applied in the 
hardware encoder without causing the latency delay. For example, 
as illustrated in Figure 2, when the MB1 is coded in IME stage, it 
needs the QP value that generated by the rate control on the 
previous MB (i.e. MB0) that is coded just in FME stage. Therefore, 
based on the original H.264 BU-level RC algorithm, it will cause 
the latency delay when it is realized in a pipelined design.  

 

 
Figure 2. Pipelined scheduling in a H.264 hardware encoder 

 

In order to solve the above mentioned problems, we first divide 
the rate control algorithm into two parts, i.e. Update QP model and 
Update RC&MAD model. Then we perform the Update QP model 
before doing IME for each MB from the 5th MB, and perform the 
Update RC&MAD model after doing Entropy coding, as shown in 
Figure 3 to release the sequential data processing dependency for 
the pipelined H.264 hardware encoder.  

As shown in Figure 3, there is an interval of four MBs in both 
the Update RC&MAD model and Update QP model. When we 
want to calculate the target remaining bits for the Update QP 
model, the other three previous MB’s total used bits are not 
calculated at all.  Therefore, we propose a new algorithm to predict 

the total bits. In addition, the original H.264 RC algorithm also 
suffers from both high computational complexity and high local 
buffer requirement for storing intermediate parameters. For 
overcoming this problem, we use the average MAD in the previous 
frame instead of storing all the MAD values for BUs in the 
previous frame. Using this way can reduce large internal memory 
for storing MAD values. 
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Figure 3. Proposed pipelined rate control algorithm for H.264 

In the following, we describe the proposed pipelined RC 
algorithm with BU=1MB in terms of five steps. 

Step 1: Initializing the Qp values for the first four BU’s, as shown 
in Eq. (12): 
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As shown in the Figure 3 in the pipeline architecture, the first four 
MBs don’t have enough data to calculate the QP value. So we 
adopt the initial QP to solve this problem. If the 5th MB is 
encoded, the Update QP Model will be enabled to generate the QP 
values at IME stage for the encoded MB. 

 
Step 2: Calculating the average value of MAD for the previous 
frame. The original H.264 RC algorithm uses the MAD of the 
previous co-located BU in order to predict the MAD of the current 
BU, which suffers from large buffer for storing the co-located 
MAD values in the hardware realization especially for high 
definition video. For reducing the memory buffer size, we adopt 
the average MAD value of the previous frame (i.e. PFAVGMAD) 
to predict the MAD of the current BU, as shown in Eq. (13): 

)13(                         
1

        NMADPFAVGMAD unit

N

i
i

unit

=
=

 

Step 3: Using the PFAVGMAD to predict the MAD (i.e. PdMAD). 
Because we use the PFAVGMAD value to predict the MAD value, 
there will be some inaccuracy. For achieving accurate prediction 
on the predicted bits, we define a MAD ration, i.e. MADratio1, for 
this purpose. We use the MADratio1 to improve the prediction 
accuracy, where the PBUactMAD denotes the previous BU’s actual 
MAD value shown in Eq.(14): 

PBUactMADPFAVGMADMAD
 CMADPFAVGMADCPdMAD
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Step 4: Predicting the previous three BU’s bits (i.e. PPBUBits), as 
shown in Eq. (15): 
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where the PBUBits denotes the previous BU’s actual bits and the 
PPBUBits denotes the predicted BU bits. For example, let us look 
at the MB4 under the Update QP model as shown in Figure 3. At 
that time just MB0 produces its actual bits but MB1, MB2, and 
MB3 don’t, we predict their total bits according to Eq. (15) by 
using the MADratio2 to improve the prediction accuracy. 

Step 5: Computing the target bits for the ith BU. In order to reduce 
the compute complexity in computing the target bits for the ith BU 
specified in Eq. (10), we calculate the target bits for the ith BU 
according to Eq. (16): 
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frame. By multiplying the remaining NumofBU‘s value instead of 
summarizing the MAD2, The complexity of calculating the target 
bits for the ith frame is reduced from )( 2nO to )(nO . In this way, 
we can greatly simplify its complexity. For QCIF sequence has 99 
MBs in a frame, we compute our rate control algorithm for 
hardware design needs 9801 cycles per frame, and estimate Eq. (16) 
that needs 226 cycles per frame. We also predict Eq. (10) that 
needs 4185 cycles for one frame. Suppose that other conditions do 
not change, we has reduces the hardware cycles in terms of 28%. 
Under the same conditions, we can reduce 66% cycles for CIF, 
87% cycles for D1. 

 
4. SIMULATION RESULTS 

 
We have realized the proposed RC algorithm on the JM10.2 

[10]. Table 1 shows the simulation results of the proposed 
algorithm as compared to that of JM10.2 [10] with different video 
sequences at different bitrates. As shown in Table 1, the proposed 
RC algorithm possesses almost the same video quality as compared 
to that of H.264 JM10.2 [10].  

 

Table 1. Simulation results and comparison 

Sequence: Foreman, CIF, BU=1MB, Init_QP=24 
Target Bitrate 

(kbps) 256 384 512 640 

JM 10.2 RC 32.99 34.76 35.93 36.85
PSNR 
(dB) 

Proposed RC 32.99 34.77 35.94 36.84
PSNR Gain (dB) 0 0.01 0.01 -0.01

Sequence: News, CIF, BU=1MB, Init QP=24 
Target Bitrate 

(kbps) 256 384 512 640 

JM 10.2 RC 37.98 40.12 41.64 42.73
PSNR 
(dB) 

Proposed RC 38 40.17 41.67 42.77
PSNR Gain (dB) 0.02 0.05 0.03 0.04

 

Moreover, we use the average MAD instead of  the previous 
frame co-located BU’s MAD in the proposed RC algorithm, which  
results in only bitsNunit 14×  required internal memory buffer size 
for storing MAD. This buffer size is under the assumption of using 
fixed point arithmetic with 5-bit integer and 9-bit fraction for 
representing MAD values. This feature is much helpful for the 
hardware realization of the proposed RC algorithm in a pipelined 
H.264 video encoder. 
 

5. CONCLUSIONS  
 

In this paper we have proposed a low complexity H.264 
pipelined BU-level RC algorithm facilitating the hardware 
realization. The proposed algorithm not only breaks down the 
sequential data processing dependency in the original H.264 BU-
level RC algorithm, but also greatly reduces the hardware cycles in 
terms of 28% for QCIF, 66% for CIF, 87% for D1 and buffer size 
requirements in terms of 26% for QCIF, 59% for CIF, 83% for D1 
when realized in hardware. Moreover, the simulation results show 
that the proposed RC algorithm owns almost the same video 
quality as compared to that of H.264 JM 10.2. 
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