
A H.264 BASIC-UNIT LEVEL RATE CONTROL ALGORITHM
FACILITATING HARDWARE REALIZATION

Ping-Tsung Wu1, Tzu-Chun Chang1, Ching-Lung Su2,3, and Jiun-In Guo1

1Department of Computer Science and Information Engineering, National Chung Cheng University,

Chia-Yi 621. Taiwan, R.O.C.
2Department of Electronics Engineering, National Yunlin University of Science Technology,

Yun-Lin, 640, Taiwan, R.O.C.
3SoC Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC

1Emails: {wupt, ctc95m, jiguo}@cs.ccu.edu.tw 2Email: kevinsu@yubtech.edu.tw

ABSTRACT

Rate Control plays an important role for video coding
especially in video streaming applications with bandwidth
constraints. The inherent sequential processing in H.264 basic unit
(BU) level rate control algorithm makes it hard to be realized in a
pipelined H.264 hardware encoder without increasing the
processing latency. In this paper we propose a new H.264 BU-level
rate control algorithm facilitating hardware realization. The
proposed algorithm breaks down the sequential processing
dependence in the original rate control algorithm in JM and
reduces 28% for QCIF, 66% for CIF, 87% for D1 of hardware
cycles while maintaining good video quality. Simulation results
shows that the proposed algorithm reduces MAD’s memory buffer
size to be Nunit * 14bits, which amounts to 26% for QCIF, 59% for
CIF, 83% for D1 reduction as compared to JM rate control.
Moreover, the proposed algorithm possesses high feasibility for
hardware realization.

Index Terms— H.264, Rate Control, BU Level

1. INTRODUCTION

In recent years, end-to-end video applications like video
phones require stable video quality during communication between
two parties. To achieve stable video quality, Rate Control (RC)
plays an important role to maintain a good video quality under the
constraint of finite varying bandwidth during video transmission.
RC algorithms can dynamically adjust the Quantization Parameter
(QP) values in order to achieve the specified target bitrates during
video encoding. If you want to have high bitrates, you have to
choose small QP values. If we disable the RC operations of a video
encoder system, it will keep the fixed QP values and the output
bitrates are not constant anymore. On the other hand, if we enable
the RC operations, we will have constant bitrates in encoding
video. Figure 1 shows the real compressed bits for the “Silence”
sequence with RC disabling/enabling. The parameters for the RC
operations are GOP=30, QP=24 and target bitrate=256kbps.

In the literatures, there have been many RC algorithms
proposed to improve the quality for H.264 video encoding. Most of
them are derived based on quadratic Rate Distortion (RD) model.

The reference software (JM) of H.264 video encoder adopts the
linear model to predict the Mean Absolute Difference (MAD)
value for solving rate control and Rate Distortion Optimization
(RDO) problems [1-2]. However, it suffers from the QP dilemma
problem. In order to resolve this problem, all the exiting H.264 RC
algorithms estimate QP or MAD values by using the information of
previous MBs [4].

0

2

4

6

8

10

12

14

16

18

20

1 6 11 16 21 26 31 36 41 46 51 56

Frame Number

N
um

be
r o

f B
its

 (K
B

yt
e)

RC Disable
RC Enable

Figure 1. Real bits for “Silence” sequence with disabling/enabling RC

operations

The RC algorithm of H.264 reference software JM is divided
into three levels: i.e. Group of Picture (GOP) level, Frame level
and Basic Unit (BU) level [1]. Among them, BU-level RC
algorithm owns better performance in allocating the data bits than
the frame-level RC for video encoding. There have been some
papers proposed for H.264 RC using different levels [3-6]. All of
these RC algorithms are implemented in software, which makes
them hard to be realized in a pipelined H.264 video encoder design
without increasing latency induced by the sequential RC
processing requirement. In addition, the H.264 RC algorithm is
much more complex than that of MPEG-4, which also induces
high hardware cost in the hardware realization.

In order to solve the problems induced by the RC sequential
processing requirement and high hardware complexity, we propose
a new H.264 BU-level RC algorithm facilitating the hardware
realization. The proposed RC algorithm can break down the
sequential data processing dependency, which is beneficial for

21851-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

hardware realization in a pipelined H.264 video encoder. In
addition, we also greatly reduce the internal memory buffer size for
storing the MAD values, which amounts to 26% for QCIF, 59%
for CIF, 83% for D1 reduction as compared to JM RC. This
advantage is resulted from a new predictor model to predict the
MAD value and target bits when it is realized in hardware.
Moreover, the proposed RC algorithm possesses almost the same
video quality as compared to JM. With these features, the proposed
RC algorithm could be easily integrated with H.264 video encoder
hardware design with low hardware complexity and high video
quality.

The rest of this paper is organized as follows. We first
describe the H.264 RC algorithm in Section 2. Then we illustrate
the proposed algorithm in Section 3. The simulation results on the
proposed algorithm are described in Section 4. Finally, we give a
brief conclusion in Section 5.

2. H.264 RATE CONTROL ALGORITHM

The H.264 RC algorithm is divided into three different levels,
i.e. GOP level, frame level, and BU level. In the following sub-
sections, we will introduce the H.264 RC algorithm in more details.

2.1. GOP Level Rate Control
The default GOP consists of one I frame and twenty-nine P

frames in H.264. When the jth frame in the ith GOP is coded, the
remaining bits of the rest frames in the GOP are calculated as Eq.
(1) shows:

(1)
,....3,2)1()1(

1
)(

=−−−

=×
=

NjjtjR

j(j) -VN
F
B

jR

ii

ii
i

In Eq. (1), B denotes the channel bandwidth. F is frame rate. Ni is
the total number of frame in GOP. The ti(j-1) is the actual bits of
the (j-1)th frame. Ri(j) is the remaining bits of the rest frames. Vi(j)
is the virtual buffer, which can be computed by Eq. (2) and
updated each frame. More detailed information could be found in
[1].

(2))1()1()(
F
BjtjVjV iii −−+−=

2.2 Frame Level Rate Control
The frame level rate control can be divided into two stages, i.e.

the pre-encoding stage and the post-encoding stage, which are
respectively illustrated in the following.

2.2.1 Pre-encoding Stage

Each frame will compute the QP values via the following two
steps:

Step 1: Determine the target bits for each P frame. The target
buffer level (Tbl) that is predefined for each frame could be
obtained from Eq. (3):

(3)
1
)()1()(

−
−−=

Tp

i
ii N

ITbl
jTbljTbl

where NTp is total number of P frames and Tbli(I) is the initial
value. After encoding the first P frame of the GOP, the initial value
is set as indicated in Eq. (4) for the updates in every GOP.

(4))2()2(ii VTbl =

Then, the available target bits for the current frame are allocated as
shown in Eq. (5) as

(5)))()((
~

jVjTbl
F
BT iii −×+= γ

where is a weighted coefficient with the value set to be 0.5.
Meanwhile, the average remaining bits of the current frame are
calculated according to Eq. (6):

(6))()(
Np

jRjTi =
∧

where Np is the number of the rest P frames in the GOP. The final
target bits can be computed from)(~ jTi and)(ˆ jTi according to Eq.
(7) as

(7))(~)1()(ˆ)(jTjTjT iii ×−+×= ββ

where the is a weighted coefficient with the value set to be 0.5.

Step 2: Compute the quantization parameter. The MAD of the
current frame is predicted by a linear prediction model as shown in
Eq. (8), which uses the actual MAD of the previous frame.

(8)2)1(*1)(CjMADCjMAD ii +−=

where C1 and C2 are two coefficients. The initial value of C1 and
C2 are respectively set to 1 and 0 [1]. They are updated frame by
frame or BU by BU during encoding. Then the quantization step
(Qstep) of the current frame can be computed according to the
quadratic R-Q model [1-2], as shown in Eq. (9):

(9)
)(2)(1

)(2Qstep

jMADX
Qstep

jMADX
jT ii

i
×

+
×

=

where X1 and X2 are two coefficients which [2,8,9] used. When we
get the Qstep values, the QP values can be calculated by using the
relationship between the quantization step and the quantization
parameter of H.264 [1].

2.2.2 Post-encoding Stage
After encoding a frame, the coefficients C1, C2, X1 and X2

coefficients are updated [1].

2.3 BU Level Rate Control
A frame is composed of Nmb MBs. A basic unit (BU) is

composed of a group of continue Nbu MB. For example, a BU is
composed of 4 MBs if Nbu =4. Here shows the steps for doing BU
level rate control in JM.

Step 1: Predicte the MAD as shown in Eq. (8) by using the
previous frame co-located BU’s actual MAD.

Step 2: Compute the target bits for the ith BU, as shown in Eq. (10):

2186

(10) B -

)(

)(
header

1

2

2

=

×=
unitN

k
k

bubu

jMAD

iMAD
RT

where Rbu denotes the remaining bits of the current frame with the
initial value set to be Ti(j). Bheader denotes the average header bits
for all coded BU. Nunit is the number of the total BUs which can be
obtained by Eq. (11):

(11)
bu

mb
unit N

N
N =

Step 3: Compute the Qstep as shown in Eq. (9), and translate
Qstep to QP according to the way specified in H.264 [1].

3. PROPOSED PIPELINED RC ALGORITHM

The H.264 RC algorithm described in Section 2 is not good for
hardware realization due to the inherent sequential processing
operations. We propose a low complexity H.264 pipelined RC
algorithm to break down the sequential data processing
dependency for facilitating the hardware realization with good
video coding quality. For the H.264 hardware encoder design [7]
with pipelined control as shown in Figure 2, the H.264 BU-level
(with BU=1MB) RC algorithm cannot be directly applied in the
hardware encoder without causing the latency delay. For example,
as illustrated in Figure 2, when the MB1 is coded in IME stage, it
needs the QP value that generated by the rate control on the
previous MB (i.e. MB0) that is coded just in FME stage. Therefore,
based on the original H.264 BU-level RC algorithm, it will cause
the latency delay when it is realized in a pipelined design.

Figure 2. Pipelined scheduling in a H.264 hardware encoder

In order to solve the above mentioned problems, we first divide
the rate control algorithm into two parts, i.e. Update QP model and
Update RC&MAD model. Then we perform the Update QP model
before doing IME for each MB from the 5th MB, and perform the
Update RC&MAD model after doing Entropy coding, as shown in
Figure 3 to release the sequential data processing dependency for
the pipelined H.264 hardware encoder.

As shown in Figure 3, there is an interval of four MBs in both
the Update RC&MAD model and Update QP model. When we
want to calculate the target remaining bits for the Update QP
model, the other three previous MB’s total used bits are not
calculated at all. Therefore, we propose a new algorithm to predict

the total bits. In addition, the original H.264 RC algorithm also
suffers from both high computational complexity and high local
buffer requirement for storing intermediate parameters. For
overcoming this problem, we use the average MAD in the previous
frame instead of storing all the MAD values for BUs in the
previous frame. Using this way can reduce large internal memory
for storing MAD values.

FMEIME Intra

Time

MBs

Initial QP

Entropy

FMEIME Intra Entropy

FMEIME Intra Entropy

FMEIME Intra Entropy

FMEIME Intra Entropy

FMEIME Intra Entropy

MB0

MB1

MB2

MB3

MB4

MB5

Update RC&MAD Model

Update QP model

Figure 3. Proposed pipelined rate control algorithm for H.264

In the following, we describe the proposed pipelined RC
algorithm with BU=1MB in terms of five steps.

Step 1: Initializing the Qp values for the first four BU’s, as shown
in Eq. (12):

(12) _
)4_(

QPInitialQp
NumberMBif

=
<

As shown in the Figure 3 in the pipeline architecture, the first four
MBs don’t have enough data to calculate the QP value. So we
adopt the initial QP to solve this problem. If the 5th MB is
encoded, the Update QP Model will be enabled to generate the QP
values at IME stage for the encoded MB.

Step 2: Calculating the average value of MAD for the previous
frame. The original H.264 RC algorithm uses the MAD of the
previous co-located BU in order to predict the MAD of the current
BU, which suffers from large buffer for storing the co-located
MAD values in the hardware realization especially for high
definition video. For reducing the memory buffer size, we adopt
the average MAD value of the previous frame (i.e. PFAVGMAD)
to predict the MAD of the current BU, as shown in Eq. (13):

)13(
1

 NMADPFAVGMAD unit

N

i
i

unit

=
=

Step 3: Using the PFAVGMAD to predict the MAD (i.e. PdMAD).
Because we use the PFAVGMAD value to predict the MAD value,
there will be some inaccuracy. For achieving accurate prediction
on the predicted bits, we define a MAD ration, i.e. MADratio1, for
this purpose. We use the MADratio1 to improve the prediction
accuracy, where the PBUactMAD denotes the previous BU’s actual
MAD value shown in Eq.(14):

PBUactMADPFAVGMADMAD
 CMADPFAVGMADCPdMAD

ratio

ratio

/
(14) 21

1

1

=
+××=

2187

Step 4: Predicting the previous three BU’s bits (i.e. PPBUBits), as
shown in Eq. (15):

(15) /
3

2

2
PdMADPBUactMADMAD

MADPBUBitsPPBUBits

ratio

ratio

=
××=

where the PBUBits denotes the previous BU’s actual bits and the
PPBUBits denotes the predicted BU bits. For example, let us look
at the MB4 under the Update QP model as shown in Figure 3. At
that time just MB0 produces its actual bits but MB1, MB2, and
MB3 don’t, we predict their total bits according to Eq. (15) by
using the MADratio2 to improve the prediction accuracy.

Step 5: Computing the target bits for the ith BU. In order to reduce
the compute complexity in computing the target bits for the ith BU
specified in Eq. (10), we calculate the target bits for the ith BU
according to Eq. (16):

(16) B - MAD)(headerratio22

2
×

×
×=

NumofBUPFAVGMAD

PdMAD
RT i

bubu

In Eq. (10), it must calculate)1(2
11)-(−×+

unit
unit NN times in a

frame. By multiplying the remaining NumofBU‘s value instead of
summarizing the MAD2, The complexity of calculating the target
bits for the ith frame is reduced from)(2nO to)(nO . In this way,
we can greatly simplify its complexity. For QCIF sequence has 99
MBs in a frame, we compute our rate control algorithm for
hardware design needs 9801 cycles per frame, and estimate Eq. (16)
that needs 226 cycles per frame. We also predict Eq. (10) that
needs 4185 cycles for one frame. Suppose that other conditions do
not change, we has reduces the hardware cycles in terms of 28%.
Under the same conditions, we can reduce 66% cycles for CIF,
87% cycles for D1.

4. SIMULATION RESULTS

We have realized the proposed RC algorithm on the JM10.2

[10]. Table 1 shows the simulation results of the proposed
algorithm as compared to that of JM10.2 [10] with different video
sequences at different bitrates. As shown in Table 1, the proposed
RC algorithm possesses almost the same video quality as compared
to that of H.264 JM10.2 [10].

Table 1. Simulation results and comparison

Sequence: Foreman, CIF, BU=1MB, Init_QP=24
Target Bitrate

(kbps) 256 384 512 640

JM 10.2 RC 32.99 34.76 35.93 36.85
PSNR
(dB)

Proposed RC 32.99 34.77 35.94 36.84
PSNR Gain (dB) 0 0.01 0.01 -0.01

Sequence: News, CIF, BU=1MB, Init QP=24
Target Bitrate

(kbps) 256 384 512 640

JM 10.2 RC 37.98 40.12 41.64 42.73
PSNR
(dB)

Proposed RC 38 40.17 41.67 42.77
PSNR Gain (dB) 0.02 0.05 0.03 0.04

Moreover, we use the average MAD instead of the previous
frame co-located BU’s MAD in the proposed RC algorithm, which
results in only bitsNunit 14× required internal memory buffer size
for storing MAD. This buffer size is under the assumption of using
fixed point arithmetic with 5-bit integer and 9-bit fraction for
representing MAD values. This feature is much helpful for the
hardware realization of the proposed RC algorithm in a pipelined
H.264 video encoder.

5. CONCLUSIONS

In this paper we have proposed a low complexity H.264
pipelined BU-level RC algorithm facilitating the hardware
realization. The proposed algorithm not only breaks down the
sequential data processing dependency in the original H.264 BU-
level RC algorithm, but also greatly reduces the hardware cycles in
terms of 28% for QCIF, 66% for CIF, 87% for D1 and buffer size
requirements in terms of 26% for QCIF, 59% for CIF, 83% for D1
when realized in hardware. Moreover, the simulation results show
that the proposed RC algorithm owns almost the same video
quality as compared to that of H.264 JM 10.2.

6. REFERENCES

[1] K. P. Lim, G. Sullivan, T. Wiegand ,“Text Description of Joint

Model Reference Encoding Methods and Decoding
Concealment Methods,” JVT-O079, Busan, Korea, April 2005.

[2] T. Chiang, and Y.Q. Zhang, “A new rate control scheme using
quadratic rate distortion model,” IEEE Transactions on CSVT,
Issue 1, Volume 7, pp. 246-250, Feb. 1997.

[3] X. Yi, and N. Ling, “Rate control using enhanced frame
complexity measure for H.264 video,” IEEE Workshop on
Signal Processing Systems, pp. 263-268, Oct, 2004.

[4] H. Yu, Z. Lin, and F. Pan, “An improved rate control algorithm
for H.264,” Proc. ISCAS’2005, Vol.1, pp. 312-315, May, 2005.

[5] M. Jiang, X. Yi, N. Ling, “Improved frame-layer rate control
for H.264 using MAD ratio,” Proc. ISCAS’2004, Vol.3, pp.
III- 813-6, May, 2004.

[6] S. Su, S. Yu, and J. Zhou, “An improved Basic-Unit Layer
Rate-Control Scheme on H.264,” Proc. PDCAT’2005, pp. 815-
819, Dec, 2005.

[7] T. C. Chen, Y. W. Huang, and L. G. Chen, “Analysis and
design of macroblock pipelining for H.264/AVC VLSI
architecture,” Proc. ISCAS’2004, Vol.2, pp. II-273-6, May,
2004.

[8] H. J. Lee , T. H. Chiang and Y. Q. Zhang, “Scalable Rate
Control for MPEG-4 Video,” IEEE Transactions on CSVT, 10:
pp. 878-894, 2000.

[9] A. Vetro, H. Sun and Y. Wang. “MPEG-4 rate control for
multiple video objects,” IEEE Transactions on CSVT, 9: pp.
186-199, 1999.

[10] http://iphome.hhi.de/suehring/tml/download/jm10.2.zip

2188

