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ABSTRACT 
 
This paper presents a depth estimation method which 
converts two-dimensional images into three-dimensional 
data. Based on two-dimensional wavelet analysis of 
Lipschitz regularity for defocus estimation on edges, this 
method can effectively eliminate the horizontal stripes in the 
depth map resulted from traditional one-dimensional 
wavelet based approaches. Besides, we also propose several 
techniques such as edge enhancement, color-based 
segmentation, and depth optimization to obtain a more 
reliable and smoother depth map. The experimental results 
demonstrate the effectiveness of our proposed techniques. 
 

Index Terms— 2D to 3D conversion, depth map, 
wavelet, Lipschitz exponent, color segmentation 
 

1. INTRODUCTION 
 
Recently an advanced 3-DTV system has been put forward 
based on the new technology called Depth Image-Based 
Rendering (DIBR) [1]. In this system, a new 3-D data 
representation is adopted, which includes the traditional 2-D 
images and their associated per-pixel depth maps. The depth 
maps can be used to describe the 3-D location of each point 
in the images. This representation is generally considered to 
be more efficient for coding, storage, transmission and 
rendering than traditional 3-D video representations.  

One of the key problems rest in the above system is 
how to recover depth information from 2-D data, which is 
also a difficult problem in computer vision. Although there 
have been depth cameras which can directly obtain depth 
values along with the colorful 2-D images, the range of 
distance and other lighting conditions are quite restricted. 
The feasible methods for now are still the classical 
computer vision methods such as stereo or monocular vision. 
Depth from stereo match is the common method in this 
research area, which exploits the disparities between two 
slightly different images from the left and the right view [2]. 
Besides disparity as one kind of depth cues, there are also 
monocular cues such as gradients, defocus, occlusion, haze, 
etc. Estimating depth from monocular cues is a challenging 

and interesting problem, and particularly convenient for 
generating the DIBR based 3-D data representation.  

In previous works of monocular cues based depth 
recovering, Harman et al. [3] used machine learning 
algorithms to estimate depths. Battiato et al. [4] proposed a 
classification method to label images as indoor, outdoor 
with geometric elements, or outdoor without geometric 
elements. For the first two classes of images, the depths 
were designated based on the detection of vanishing lines. 
In [5] a supervised learning approach and a 
discriminatively-trained Markov Random Field model were 
used. Researches on depth from defocus appeared in many 
literatures [6][7], which extracted the actual distance of a 
point in the scene by measuring the amount of blurring at 
the corresponding point in the image. 

A method to obtain a relative depth map from a single 
image using wavelet analysis and edge defocus estimation 
based on Lipschitz exponents was proposed in [8]. Images 
were handled as series of 1-D row signals, with the resulting 
horizontal stripes in the depth map, as shown in Fig. 1. To 
address this issue, in this paper we present an incremental 
algorithm based on wavelet transform and edge focus 
analysis in two-dimensions, taking into account the 
direction of edges and the two-dimensional characteristics 
of images. The depth map is further optimized and 
smoothed based on color segmentation to obtain much more 
accurate and reliable results.  
 

2. BACKGROUND AND RELATED WORK 
 
2.1. Wavelet analysis 
 
For images of limited depth of field (DOF), objects in the 
image may not be all in focus [6]. Usually the objects in the 
background are blurred and the textures are smoothed; 
whereas the main foreground objects are focused with sharp 
edges and textures in detail. In other words, the high 
frequencies are retained in the focused foreground, but 
greatly attenuated in the background. This suggests that the 
local spatial frequency is directly related with the degree of 
blurring, and thus the relative distance of the object from the 
camera.  
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Fig. 1. Example of the results generated by [8]. (a) Original 
image; (b) Final depth map. 

 
The high frequencies are described by the coefficients 

of the wavelet transform of the image. If there is larger 
energy in the wavelet bands of high frequency, it suggests 
that there are more details and less blurring in this region, 
where the 3-D location is nearer. The elementary relative 
depth can be estimated based on the values of wavelet 
coefficients in the high frequency bands.  

Based on this, Valencia et al. [8] divided images into 
macro blocks whose size was 16-pixel by 16-pixel. A macro 
block wavelet transform which generated 256 wavelet 
coefficients was performed. Relative depth was estimated 
by counting the number of non-zero wavelet coefficients.  
 
2.2. Edge defocus analysis 
 

According to [9], the local regularity of signals can be 
characterized by the Lipschitz exponents, which can be 
considered as a measurement of how many times the signal 
is differentiable at a point. More “regular” intensity 
variation means the edge is more defocused. 

In [8], an image was considered as a series of 1-D row 
signals. The Lipschitz regularity was computed for each row 
by measuring the decay of the wavelet transform from the 
coarser scale up to the finer scale, as the method 
demonstrated by Mallet et al. [9]. Each row was divided into 
several sections by edge points, and their depth was 
rectified according to the edge Lipschitz exponents. Finally 
the block-level depth map was converted to a final pixel-
level depth map. 

However, it is observed from the experimental results 
of [8] that there were many horizontal stripes appeared in 
the generated depth map. Besides, some of the object 
contours were also damaged. In order to overcome these 
problems, in the following section we present an 
incremental algorithm of depth estimation based on edge 
focus analysis in two dimensions and color-based 
segmentation. 
 

3. THE PROPOSED APPROACH 
 
The outline of our depth estimation algorithm is similar to 
that of [8]. However, some new techniques are reinforced. 
The main steps of our algorithm can be concluded as 
follows: 

1) Initial pixel-level depth map creation based on local 
high frequency analysis. Since wavelet transform is 

performed on the local window of each point in the image 
instead of the block-divided method used in [8], blocky 
effects in the resulting initial depth map are avoided 
effectively. 

2) Edge focus analysis based on the Lipschitz 
exponents in 2-D wavelet. Compared with the 1-D wavelet 
analysis used in [8], our method can retain the edge contour 
with a non-striped depth map. 

3) Edge points connection. Edge enhancement helps to 
form complete edges and lessen the errors caused by edge 
discontinuities when refining the depth on the basis of 
Lipschitz exponents.  

4) Depth map refining according to the Lipschitz 
exponents on edges, similar to the basic idea of [8] but in 2-
D wavelet. 

5) Color-based segmentation and depth optimization in 
each homogeneous color segment. This helps to optimize 
the depth of foreground regions with low frequency energy 
and smooth the depth map in each homogeneous color 
region. 
 
3.1. Initial depth map creation 
 
As discussed above, the depth of limited-DOF images can 
be measured by their local frequencies. In this step, we 
analyze the frequency energy of local regions based on the 
wave transforms in local block windows. For each point, its 
local window is created with the point as its center. The size 
of each window is N N (N=16 in our experiments). The 
number of the nonzero coefficients in the high frequency 
wavelet bands (the LH, HL, and HH bands) shows how 
much the details are not blurred, and therefore gives a 
relative depth value. The range of depth is adjusted from 0 
to 255 (0 denotes black and 255 denotes white in the depth 
map). More nonzero coefficients correspond to larger depth 
value, which indicates nearer in distance.  

Fig. 2 compares the initial depth maps generated by the 
block-divided wavelet method of [8] and our pixel-level 
method. It can be seen that, compared with our method the 
depth map generated by [8] is blocky, with too many details 
lost.  
 

  
(a)                                         (b) 

Fig. 2. Initial depth map comparison. (a) Result of [8]; (b) 
Result of the proposed method. 
 
3.2. Edge defocus analysis based on 2-D wavelet 
 
Mallet et al. [9] has demonstrated that the multi-scale 
wavelet modulus maxima detect all singularities. For images, 
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the 2D Gaussian function is used as the smoothing function. 
The wavelet transform has two components, which are 
proportional to the gradient vector of the corresponding 
smoothed images. Both the wavelet modulus and the angle 
are computed at each point (see also equation (45), (50), and 
(52) in [9]). Here each angle includes the information of the 
edge orientation and the direction along which the wavelet 
modulus maxima propagate across scales. In our algorithm, 
the angles are approximately classified into 8 orientations 
with an interval of / 4 , as shown in Fig. 3. 

We detect the wavelet modulus maxima along the 
angle direction across scales. These multi-scale maxima of a 
singular point form the modulus maxima curve. Among the 
points of modulus maxima, those with modulus smaller than 
a given threshold are discarded since they are possible 
noises. The Lipschitz exponent is computed from the slope 
of the wavelet modulus maxima curve in the logarithmic 
domain. If there are two maxima curves of a singular point, 
the one with smaller estimated slope is chosen. 

The results of the Lipschitz value indicate the blurring 
degree of edges. Smaller value indicates less defocus. 
According to the theories mentioned above, Lipschitz 

0

1

 indicates the step edge (normally focused edge). 
Therefore the edge points with Lipschitz exponent 

0
0 1

are considered to be focused, and those with 
are defocused.  

 
3.3. Edge enhancement 
 
Because of the interaction of the wavelet modulus maxima 
during their propagation along different directions across 
scales, and the limitation of the image resolution, some of 
the edge points may not be detected. Edge discontinuities 
are yet caused by the computation errors of the Lipschitz 
exponents, as well as the non-selection of modulus maxima 
whose values are smaller than the threshold in the previous 
step. Therefore in order to create a precise pixel-level depth 
map, edge connection is necessary.  

For each edge point that has been detected, we search 
for the possible edge points in its 8 neighborhoods. If the 
candidate point is a modulus maximum point and its 
modulus is close to that of the current edge point, then it is 
considered as an edge point. The Lipschitz exponent of the 
new edge point is estimated by its neighbor edge points 
which have already been computed. Therefore the edges, 
especially for the foreground objects, can be well connected. 
Fig. 4 shows the example of edge points before and after the 
operation of this step.  
 
3.4. Depth map refining 
 
With the complete edges and the Lipschitz exponents at all 
the edge points, each of the interior point can be classified 
into one of the following three categories according to its 
edges:  

 
 
Fig. 3. Angle directions used in 2-D edge defocus analysis 
 

 
(a)               (b) 

Fig. 4. Edges before and after connection. (a) Initial edges 
before connection; (b) The connected edges. 
 

  If most of the Lipschitz values of the edge points 
satisfy 1 0 , the current interior point is marked as 
foreground point, and its depth is the maximum of the initial 
depths in the current region. 

  If most of the Lipschitz values of the edge points 
satisfy 0 1  or even larger than 1 (the boundary of the 
image is set to any value more than 1), the current interior 
point is background whose depth is the minimum depth of 
the region. 

 Points not satisfying the above two has the 
approximately equal numbers of edge Lipschitz in 

1 0  and 0 1 , or none of the two has absolute 
advantage. The depths of these points are set to the initial 
depth value that appears most in the region.  

After all points are processed with the above rules, the 
depth map is refined, as shown in Fig. 5. 

 
3.5. Depth map optimizing 
 
In limited-DOF images, usually the focused foreground 
with various textures has high energy and the number of 
nonzero wavelet coefficients is large. In this case the depth 
estimation has approximately accordant values. However in 
the interior regions of the focused foreground objects with 
uniform color and few textures, the local frequency may be 
very low. As a result, the estimated relative depth value is 
smaller than the truth. To rectify this error, this step tries to 
compensate the depth of such foreground regions.  

The Mean Shift algorithm is used for color-based 
segmentation [10]. The image is divided into segments with 
homogeneous colors. Then we check in each segment the 
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number of the foreground pixels marked in the previous 
step. If the proportion of the foreground pixels in a segment 
is larger than a given threshold, the segment is considered as 
a foreground segment. If the average depth value of a 
foreground segment is smaller than that of the background, 
we rectify its depth D  according to the mean value of 
the edge Lipschitz exponents. Let min , max be the 
minimum and maximum Lipschitz of all the foreground 
respectively, , be the minimum and maximum 
depth value of all the foreground, then 

minD maxD

max min
max max

max min

( )
D D

D D  

Following the common premise that each 
homogeneous color region has approximately homogeneous 
depth value, it is necessary to smooth the depth in each 
homogeneous color segment. In our algorithm, the mean 
filter is selected to smooth the depth map. An example of 
the final result is shown in Fig. 6. 
 

4. EXPERIMENTAL RESULTS 
 
In our experiments, we first compare our proposed method 
with the one of [8] using the color image provided by [8] as 
shown in Fig. 1(a). The final results of these two methods 
are shown in Fig. 1(b) and Fig. 6 respectively. From the 
figures it can be observed that our result avoids the 
horizontal stripes and well retains the object edges. The 
foreground details such as the trees are also recognized with 
their relative depths. However, errors still happen in some 
background regions since they are surrounded by the 
focused edges. Segmentation parameters influence the final 
depth yet. Segments which coincide with the edges detected 
by the Lipschitz singularity have good results. 

Fig. 7 demonstrates other images and their depth maps 
generated by the proposed algorithm of this paper. The left 
column shows the original 2-D images and the right column 
shows their corresponding depth maps. The results show 
that our method is robust and reliable.  

 
5. CONCLUSIONS 

 
This paper presents a depth estimation method from 2D 
images, which is quite enough for 3D rendering and stereo 
applications. Based on the edge defocus analysis and color-
based segmentation, we can get relatively reliable and 
smooth depth maps. Future work is to add human 
interactions to depth generations. 
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Fig. 5. The refined depth 
map based on edge defocus.

Fig. 6. The final depth map 
after optimization. 

 

      

     
Fig. 7. Other images and their depth maps generated by the 
proposed method. 
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