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ABSTRACT 
 
In the context of voice-based mobile search, this paper presents a 
new approach to mobile ringtone search through query by hum-
ming: A user can call a service, hum a part of melody through the 
mobile phone, and obtain the ringtones or songs he or she is look-
ing for. Correspondingly, we propose a method of query by hum-
ming tailored to this scenario. A robust front-end processing is 
first presented to deal with the mobile phone recording, which is 
distorted due to GSM codec, environment and wireless transmis-
sion. Then, a systematic probabilistic model and matching proce-
dure inspired by Hidden Markov Model (HMM) is presented, by 
considering the alignment and error tolerance in the matching 
between query and songs. A rescoring heuristic is finally em-
ployed to further improve matching accuracy. Moreover, our sys-
tem is evaluated on realistic mobile recordings from the field. 
Experiments show our approach can achieve 83% accuracy on a 
database with 3000 songs in this realistic scenario. 
 

Index Terms— mobile search, voice search, mobile ringtone 
search, query by humming  
 

1. INTRODUCTION 
 
Mobile search has attracted intensive research and commercializa-
tion in recent years to enable users to search on the move. Current 
mobile search engines, such as Live Mobile [8], are mostly shrunk 
versions of their desktop-based counterparts with modified screen 
layouts, using text-based query input. However, some information 
needs are not always suitable to be described by keywords, and 
even where this is possible, owing to the constrained input mo-
dalities, it is still inconvenient to use such search services on mo-
bile devices. Instead, search by voice is a natural way for inputting 
search queries especially in the mobile scenario, since the users 
are very familiar with the basic function of mobile phones  
voice communications. 

Meanwhile, mobile ringtone downloads are, surprisingly, a bil-
lion-dollar market (4.9B dollars worldwide in 2005). In this paper, 
to facilitate ringtone search, we present our work on mobile ring-
tone search through query by humming, aiming at searching for a 
desired ringtone or song by singing, humming, or whistling its 
melody. Humming search is especially useful when a user does 
not know song’s title or artist information. Moreover, humming 
and ringtone search is a perfect match in the mobile scenario: 
Voice is the natural means of input on a mobile phone, and sig-
nificantly more convenient than text input; ringtones are usually 
available in MIDI format so that the melody extraction is no prob-
lem; and the obtained ringtones are intended for use on the mobile 
device itself, so that it is a one-step solution.  

The core technology in this system, query by humming (QBH), 
has been a research topic since 1995 [1]. The key problem is to a 
match melody (pitch sequence) between a human-voice query and 
a ringtone/song database. This is essentially a problem of ap-
proximate temporal sequence matching with the special require-
ment of tolerance to errors, since humans seldom reproduce a tune 
exactly as the reference (key, speed, rhythmic/melodic deviation). 
Various approaches have been presented in the literature, regard-
ing front-end processing (pitch extraction and note transcription), 
modeling and matching (approximate string matching and dy-
namic programming). For instance, [1] presents an approach by 
using approximate string matching of symbolic features: note up 
(U), note down (D), and note repetition (R). To be more robust 
with respect to insertion/deletion errors and timing deviation, 
Dynamic Time Warping (DTW) and its probabilistic pendant, 
Hidden Markov Model (HMM), are used for melody matching, 
either with continuous pitch as the melody representation [2][6], 
or with transcribed discrete notes (to speed up matching) [3][4][5]. 
The HMM, which has been successfully used in speech recogni-
tion, also has produced encouraging results in query by humming. 
However, previous work [4][6] has usually taken HMMs as a 
black box, without explicitly modeling the alignment between 
query and songs, nor addressing the error-tolerance in matching. 
[5] incorporates note deletion and insertion errors in HMM mod-
eling. However, its complex model usually needs several training 
recordings for each song.  

In this paper, we present a novel systematic probabilistic model 
and matching procedure, inspired by the HMM. It explicitly con-
siders the alignment and error tolerance in the matching model 
and the related decoder, and can obtain satisfying accuracy with 
little training/development data. Moreover, compared to the mi-
crophone laboratory recordings in previous work, the mobile 
phone recordings of our scenario usually have low quality and are 
distorted by the GSM codec and wireless transmission. To address 
this, we present a robust approach to front-end processing. We 
also have a full evaluation on realistic query data collected from a 
realistic system. To our knowledge, this is the first work on QBH 
dealing with mobile phone field recordings. 

The paper is organized as the following. Section 2 presents our 
humming search algorithms, Section 3 presents the evaluation 
results, and Section 4 concludes the paper. 

 

2. HUMMING SEARCH 
 
The core technology of query-by-humming mainly consists of 
three components: melody extraction from songs; melody extrac-
tion (“note transcription”) from query recordings based on pitch 
tracking; and a matching model suitable to handle humming errors 
and variations of timing and key.  Since the first component, mel-
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ody extraction from MIDI songs, is not a major problem, we will 
focus on the latter two components.  
 
2.1. Note Transcription from Hummed Queries  
In principle, the pitch sequence, which we will denote as ot, can 
be directly matched against a song by HMM or DTW. However, 
this is prohibitively expensive for databases of thousands of songs 
[2]. The matching can be significantly sped up if we can assume 
constant pitch throughout a note and use note sequences instead of 
continuous pitch sequences in the matching procedure. Therefore, 
we first perform note transcription from hummed queries. 

 
Fig.1. Note transcription: transcribing a humming query into the 
melody representation. 

 
The algorithm is illustrated in Fig 1. A number of acoustic fea-

tures are first extracted from each audio frame (10 ms), including 
the pitch as well as three supporting features: energy, zero-
crossing rate (ZCR), and periodicity (indicating pitch confidence). 
Then, the obtained pitch sequence is smoothed with a median 
filter and post-processed with several heuristics to remove abnor-
mal pitch values or spurious pitched segments with low confi-
dence caused by background noise. 

This “cleaned” pitch sequence is now segmented into individual 
notes, i.e. dividing the pitch sequence into segments where each 
segment corresponds to one note. Segmentation is a three-step 
process: 

• Energy contour based segmentation. Based on energy, the 
humming query is roughly divided into segments (energy tran-
sition such as energy drop/increase, and pause are strong indi-
cators of note boundaries). 

• Pitch change based segmentation. Where no obvious energy 
transition appears at a note boundary, a boundary is detected if 
the pitch change exceeds a threshold. Non-pitched segments 
are also boundaries.  

• Finally, a heuristic post-processing step aims at removing 
spurious or abnormal notes caused by background noise, such 
as the notes that are too short, have too low confidence, or oc-
cur isolated.  

With these steps, a note sequence is obtained. We now assume 
the pitch to be constant throughout one segment (one note), and 
consecutive segments with the same pitch value are merged, each 

note nk is further represented by nk = (Δnotek, durationk), where 
note stands for the pitch interval between consecutive two notes, 

in units of semitones (Δnotek = 12 · log2 (fk / fk-1)), to handle key 
variants and conform to music theory; and duration represents the 
actual time a note is hummed or played.  

Note that this way, both over-segmentation and under-
segmentation errors can and do occur. These need to be compen-
sated for in the following matching model and the related decoder. 

 

2.2. Melody Matching  
In this section, we present our probabilistic model and matching 
procedure, including the matching model, Viterbi alignment, 
pruning, and rescoring. 

  

2.2.1. Matching Model 

Given the note sequence for both query and song, the challenge 
here is to measure their similarity. Due to the inevitable variation 
in speed when a user reproduces a melody, the notes between 
query and song are not time-aligned. 

Suppose Q is the observed query and D is the song (D for 
document). The song that most likely generated the query can be 

determined as )|(maxargˆ DQPD D= , where 

)|(),|(max)|(),|()|( DAPDAQPDAPDAQPDQP
AA

≈=  (1) 

Here, A represents a monotonously increasing time alignment that 
assigns each frame/note in the query to a note in the document. 
The alignment is not known beforehand, and we therefore con-
sider it a hidden variable. P(Q|A, D), the pitch model, measures, 
given the song D is sung with time alignment A, the probability 
that the observed query Q is produced. Practically, it provides a 
measure of the pitch match between the aligned query and song 
segments. P(A|D) is the duration model that measures the prob-
ability that the song’s actual timing gets distorted to A. In order to 
calculate P(Q|D), we need to examine and sum up all possible 
alignments. As common in HMM decoding in speech recognition, 
we approximate the sum by the maximum, and introduce a flatten-
ing weight  over P(Q|A, D) to make the contribution of two mod-
els comparable (in Eq. (2)).  

We represent Q by the observed pitch sequence ot with t=1…T; 
song document D by a note (state) sequence {sj, dj}, j=1…N, in-
dicating pitch and duration; alignment A by a set of aligned time 
points {tn}, n=1…M, with start note j0; and M denotes the number 
of notes actually matched (M<N). Here, the beginning of the 
query can be aligned to any state sj0 in the song, and the matched 
note sequence is commonly a sub-sequence of the entire song. 
With these notations, the Eq. (1) can be further developed into, 
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ot and sj is used to represent the pitch interval ( sj = sj – sj-1; 
ot requires further explanation, see below); C , Cv,  and v are 

the constants for normalization and deviations of the Laplacian 
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densities used for pitch and duration deviation, whose impacts on 
final ranking is simply integrated into the flattening weight a, 
which is set to 1/9 in our experiments. It is noted that Laplacian is 
used since it shows to outperform Gaussian densities in terms of 
accuracy. To find the optimal alignment producing the maximum 
P(Q|D), the Viterbi algorithm [7] is adopted to search through all 
possible alignments. 

 

2.2.2. Alignment in Viterbi Decoding 

In principle, any arbitrary time point t in the query can be aligned 
to a note state sj in the document. To reduce the search space, we 
chose to impose a major constraint: We constrain the alignment 
points to the segment boundaries of the query, based on the note 
transcription step described in the previous section. This has an 
important implication: Since for the note-transcription process we 
have assumed pitch to be constant throughout a segment (a note), 

ot in Eq. (2) is simply ot = otj 
- otj-1

. 

However, the above constraint is too strong in the presence of 
transcription errors such as over-segmentation and under-
segmentation, or user errors such as note insertion and deletion. 
Therefore, we relax the constraint to allow multiple-on-1 or 1-on- 
multiple matches, that is, we allow multiple (two or three) query 
segments to match one note in the document, and vice versa, as 
illustrated in Fig.2. The merged multiple segments or notes are 
considered as one note or one state (with timing retained), so that 
Eq. (2) can be easily applied. 

 
Fig.2. Multiple-on-1 matches in Viterbi alignment, with various 
paths going to observation-state pair (s , t). Solid line: with a 2-on-
1 match; dashed line: with a 3-on-1 match 

 

2.2.3. Pruning 

In order to improve the matching speed, beam pruning, another 
common technique in speech recognition, is further employed in 
the Viterbi decoding: A partial alignment path ending at (ot, sj) is 
pruned (excluded from further examination) if the partial path 
probability up to this point is significantly less than the best prob-
ability at t, assuming all of the future expansions of the alignment 
path have only negligibly small chance to become the final glob-
ally optimal alignment. Paths are pruned if  
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where Q(ot , sj) stands for the partial path probability up to this 
point, which can also be calculated from Eq.(2), and fpr is the 
pruning parameter (beam width) determined experimentally.  

2.2.4. Rescoring 

It is noted that one can imagine that the duration model P(A|D) 
could be improved by considering longer-span speed deviations. 
For example, we could include the duration of previous note and 
build a “bigram” model, as,  

)
|/)(/)(|

exp(

),,|()|(

2

111

111

000

00

∏

∏

−+−+++

−+−++

−−−
−=

−−=

j

jjjjjjjjjj

j
jjjjjjjjbi

dttdttd

dttdttPDAP

ν

      (4) 

However, experiments have shown that no performance im-
provement can be achieved. This “bigram” approach is still insuf-
ficient to model the longer-span rhythm deviations. Instead, we 
found that a rescoring heuristic is able to compensate for this ef-
fect which utilizes the global correlation of the aligned duration 
sequence between query and document. A similar global correla-
tion heuristic is also applied to the aligned pitch sequence after 
global normalization. These heuristics lead to significant accuracy 
improvements. Besides this global correlation, some other factors 
are also used for final rescoring or reranking, based on the aligned 
melody sequence as well,  

1. Prior probability of entry point: Queries are not hummed with 
a random entry point in a song, but mostly start from the first 
note of a song, or the beginning of the refrain and chorus. Due 
to no label data on refrain and chorus, only the first note is 
given higher entry prior. It is more probable that a query is 
hummed from the song that their first notes are matched. 

2. Emphasize local melody extrema: We find improved matching 
accuracy from emphasizing local melody extrema. That is, the 
change points from the melody going up/down to going 
down/up (local peak or valley in the melody line) are given 
higher weights in probability measure. 

3. Note repetition information: From note transcription, we can 
obtain some partial information on note repetition. Higher 
weight is given to one segment if the number of note repeti-
tion is matched. 

 
3. EVALUATIONS 

 
In the experiments, we built an Interactive Voice Response (IVR) 
system to collect data in realistic scenarios, where the user were 
requested to call the service number by a mobile phone, pick up a 
song from a list, and then hum for 15 seconds, without further 
instructions on environment, humming style, etc. The goal was to 
collect data that is consistent with the real scenario as much as 
possible, including realistic background noise, as well as possible 
signal distortion through GSM codec and transmission. Overall, 
we collected around 500 humming queries through this prototype 
system.  The test dataset is composed of 3000 MIDI files.  

In addition to top-1 accuracy, we evaluate top-N accuracy, that 
is, the probability that the correct hit is in the top N results, for the 
scenario that a user can select a song from a returned list. We also 
evaluate the Mean Reciprocal Rank (MRR), a common metric 
used in information retrieval, which indicates the average (recip-
rocal) rank position of the correct hit: 

=
=

N

i inN
MRR

1

11
                                 (5) 

where N is the number of queries and ni is the rank position of the 
correct hit of query i.  
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Table 1. Accuracy comparison between symbolic-based approaches and 
hmm-inspired approaches, with/without rescoring and various factors 
(config: 2-on-1 matching, -log fpr = 2500). 

Symbolic  HMM-inspired Config: 
 

Metric 
w/o pitch  w/ pitch 

w/o  
rescoring 

base 
 rescoring 

rescore w/ 
all factors 

Acc. @Top1: 36.3 46.8 67.8 78.1 82.6 
MRR: 43.5 54.0 72.9 81.7 85.2 
Acc.@Top5: 53.3 60.4 78.5 86.1 88.5 
Acc.@Top20: 65.6 68.0 85.5 89.6 90.0 
 
Table 2. The effect of various rescoring factors (config: 2-on-1 matching,  
-log fpr = 2500). 

Config: 
Metric 

base  
rescoring 

w/ entry 
prior 

w/ melody 
extrema 

w/ repeti-
tion 

w/ all  

Acc.@Top1: 78.1 80.9 78.9 80.5 82.6 
MRR: 81.7 84.2 82.4 83.1 85.2 
Acc.@Top5: 86.1 87.9 86.5 86.3 88.2 
Acc.@Top20: 89.6 90.2 89.8 89.8 90.0 
 
Table 3. Comparison on 2-on-1 and 3-on-1 matching in hmm-inspired 
approach with/without rescoring (config: -log fpr = 2500). 

hmm  hmm w/ base rescoring Config: 
Metric 2-on-1 3-on-1 2-on-1 3-on-1 
Acc.@Top1: 67.8 69.9 78.1 80.1 
MRR: 72.9 75.4 81.7 84.1 
Acc.@Top5: 78.4 82.0 86.1 88.7 
Acc.@Top20: 85.5 89.1 89.6 93.8 
Time [s/query] 1.6 1.9 1.6 1.9 
 
Table 4. Comparison on pruning parameters vs. matching speed (config: 
hmm, 2-on-1 matching). 

      -log fpr: 1500 2000 2500 3000 no prune 
Acc.@Top1: 67.0 67.4 67.8 67.8 67.8 
MRR: 71.9 72.5 72.9 72.9 72.9 
Acc.@Top5: 77.3 78.1 78.5 78.5 78.5 
Acc.@Top20: 83.8 85.0 85.5 85.5 85.7 
Time[s/query] 1.4 1.5 1.6 1.7 2.7 

 

For comparison, in addition to our HMM-inspired algorithm, 
we have also implemented two variants of a common symbolic-
based matching technique proposed in previous literature [1][3]:  

• Without pitch information: symbolic matching based on UD 
(up/down) information and dynamic time warping (DTW);  

• With pitch information: consider both UD sequence and pitch 
interval information at DTW matching and similarity score 
calculation.  

For all experiments, if not further specified, the default settings 
used are 2-on-1 matching and pruning parameter -log fpr = 2500. 

Table 1 shows comparative results for the five algorithms: the 
symbolic approach without or with pitch information, our HMM-
inspired matching without rescoring, with base rescoring based 
on the global correlation between aligned duration and pitch se-
quence, and with rescoring based on all the factors listed in Sec-
tion 2.2.4. It can be seen that HMM matching significantly im-
proves accuracy over the symbolic methods: 31% and 21% abso-
lute accuracy improvement compared with the symbolic approach 
without or with pitch information. With the rescoring heuristic, 
accuracy is further improved about 10% and 15% points, by the 
rescoring scheme based on the global correlation, and all the res-
coring factors, respectively  

Table 2 show the individual effect of each rescoring factor 
added on the base rescoring scheme (including entry point prior, 
melody extrema, and repetition). Each factor helps about 1-2% 
improvement on accuracy, compared with the base rescoring (i.e., 
global correlation). 

In the second experiment, we compare the effect of 2-on-1 
matching and 3-on-1 matching, under the configuration without or 
with rescoring. 3-on-1 matching is more error-tolerant since it can 
handle the insertion or deletion of two subsequent segments. 
However, with 3-on-1 matching, the possible alignment paths are 
significantly increased, leading to increased runtime. Table 3 
shows the result. Compared with 2-on-1 matching, 3-on-1 match-
ing has an around 2%-point improvement on accuracy and 2.5% 
on MRR, whether with or without rescoring. Runtime, however, is 
increased by nearly 20%. 

The third experiment evaluates pruning. We compared several 
different fpr values, as well as no pruning. Choosing the pruning 
parameter involves a tradeoff between the accuracy and speed. 
Table 4 shows results for five pruning configurations. At -log fpr = 
2500, the searching process is sped up by 40% at no loss of accu-
racy. It is still a nice improvement although it is not as signifi-
cantly effective as the pruning in speech recognition.  

 
4. CONCLUSION 

 
This paper has presented an approach to query by humming for 
mobile ringtone search. We first presented an approach to robust 
front-end processing to deal with the mobile phone recording, 
which is usually distorted by GSM codec and wireless transmis-
sion.  Then we presented a systematic matching procedure, includ-
ing the probabilistic modeling, alignment at Viterbi decoding, 
pruning, and rescoring. Experiments showed our approach can 
achieve 83% top-1 accuracy and 85% MRR on a database with 
3000 songs. 

Room to improve the proposed approach is, for example, data-
base indexing. Currently, near linear search is performed through 
the database, which is unaffordable when the database size in-
creases large. Machine learning approaches can also be used to 
learn entry point priors of each song, from a set of training data. 
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