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ABSTRACT

The problem of optimal rate allocation to streams constitut-
ing multiple description coding (MDC) has largely been ad-
dressed under the assumption that the multiple paths available
for transmission are uncorrelated. In this paper, we model the
transmission paths as correlated erasure channels and then ex-
amine the problem of allocating a given coding rate to the
multiple descriptions in order to minimize the average dis-
tortion of the reconstructed message. We also investigate the
relationship between the optimal average distortion and cor-
relation of channels and prove that the bound on the aver-
age distortion will decrease as the correlation increases. Fur-
thermore, we derive a closed-form solution for the contour
which determines the region where multiple description cod-
ing (MDC) or single description coding (SDC) yields the min-
imal bound on the average distortion. Relying on this contour,
we present a heuristic of the optimal rate allocation problem
to determine the number of descriptions and relative rates.

Index Terms— MDC, Optimal rate allocation, Correlated
erasure channels, Multipath, KKT

1. INTRODUCTION

Multiple description coding (MDC) offers a mechanism for
providing error resilience in information transmission in sce-
narios where multiple paths are available but having a severe
delay constraint and a high probability of packet loss. MDC
generates multiple coded streams to represent the source in-
formation, and any subset of these streams can be used to
reconstruct the source message with a corresponding level of
distortion. Specifically, when all the descriptions are available
at the receiver, a high quality reconstruction of the source is
possible. However, in the absence of some of the descriptions
at the receiver, the quality of reconstruction should still be
acceptable.
MDC relies on the descriptions available at the receiver

to recover signals with reduced but acceptable quality even
when some of the descriptions have been corrupted. This
approach is fundamentally different from the use of Layered
Coding (LC), where a specific enhancement layer can be used
to improve the quality of the decoded signal provided that the
base layer and all lower-level enhancement layers have been

recovered by the receiver. It has been shown that MDC is
more effective than LC in high-error probability channels in
[1]. Furthermore, when used in conjunction with network di-
versity, MDC increases the tolerance to packet loss and delay
constraints
Batllo et al. [2] studied the optimal bit allocation problem

in order to minimize the central distortion given constraints on
the side distortion and the total coding rate. Coward et at. [3]
considered a symmetric bit allocation and studied the effect of
channel codes parameters on the the erasure probabilities and
on the average distortion. In [4], we demonstrated that MDC
outperforms SDC only when the channel code correction ca-
pabilities are poor [3] and adapt the descriptions’ rate accord-
ing to the channel erasure probability. However, all the results
are based on the multiple independent channels. In practice,
the channels could be correlated. Thus, in this paper, we ex-
tend the work that we presented in [4] to correlated channels
and investigate the relationship between channel correlation
to the optimal average distortion at the decoder. We prove that
the bound on the average distortion will decrease as the corre-
lation of the channels increases. We also derive a closed-form
expression for the contour which determines the operating re-
gion where MDC or SDC minimizes a bound on the average
distortion. Furthermore, we use the contour derived to pro-
pose a heuristic which characterizes the optimal solution to
the rate allocation problem.
The remainder of the paper is organized as follows: In

Section 2, we describe the system model. The main results of
the optimal rate allocation problem in the correlated channels
are presented in Section 3. Finally, we conclude with a brief
summary and discussion of our results in Section 4.

2. SYSTEMMODEL

The simplest model for the MDC problem is the case of two
channels and three receivers. The MDC encoder generates
two descriptions. Each individual description provides an ap-
proximation to the original message, and multiple descrip-
tions can refine each other, to produce a better approxima-
tion than that attainable by any single one alone. If both de-
scriptions are received, then the decoder can reconstruct the
source at some small distortion value D0 (the central distor-
tion), but if either one is lost, the decoder can still reconstruct
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Fig. 1. (a) Average distortion for DMDC ,Dlb,DSDC , (b) Optimal β for DMDC ,Dlb, (c) Correlation and optimal average
distortion v.s. p01

the source at some higher distortion D1 or D2 (the side dis-
tortions). Practical MDC designs appear in [5].
The characterization of the rate-distortion region for

generic source and generic distortion measure is an open
problem. The achievable rate-distortion region is completely
known for a memoryless unit-variance Gaussian source with
mean-squared error distortion [6]. In this case, the set of
achievable rates is

Di ≥ 2−2Ri , i = 1, 2 (1)

D0 ≥ 2−2(R1+R2)γ(D1, D2, R1, R2) (2)

where

1
γ

= 1 −
(√

(1 − D1)(1 − D2) −
√

D1D2 − 2−2(R1+R2)
)2

for D1 + D2 < 1 + 2−2(R1+R2) and γ = 1 otherwise.
We assume to transmit the MDC coded i.i.d. unit-variance

Gaussian source over two correlated erasure channels. Let
Ei, i ∈ {1, 2}, be the random variable that indicates whether
the packet on channel i has been erased (Ei = 1) or not (Ei =
0). Let pij = Pr[E1 = i, E2 = j], i ∈ {0, 1} and j ∈ {0, 1},
The correlation among the erasures on the two channels is

ρ =
p11 − pe1pe2√

pe1(1 − pe1) pe2(1 − pe2)
(3)

where pe1 = p11 + p10 = E[E1] and pe2 = p11 + p01 =
E[E2] are the erasure rates on channel 1 and 2, respectively.
If a packet in one description is erased, the appropriate

side decoder is used. If both descriptions are lost, the mean
value of the source is output, which results in a distortion
equal to the source variance. Thus, the average distortion [3]
is

Dave = p11 + p01D1 + p10D2 + p00D0 (4)

In order to allow sensible comparisons betweenMDC and sin-
gle description code (SDC), we further require that the total

source coding rate satisfies R1 + R2 = C, where C is a pos-
itive constant representing the total number of bits per source
sample. The total rate constraint is introduced to ensure that
we do not give any advantage to MDC over SDC. Further-
more, this restriction has practical significance when the costs
of network services depend on transmission rates as well as in
the design of multiplexing systems for transmission of multi-
ple streams.
Our goal is to find the optimal rate allocation policy β ∈

[0, 1] such that R1 = βC and R2 = (1 − β)C minimize
the average distortion in (4) within the rate-distortion region
specified by (1)-(2). We denote withDMDC the optimal value
ofDave. With the introduction of the parameter β, the sum of
the side distortions always satisfy

e−βc + e−(1−β)c ≤ D1 + D2 < 1 + e−c

for all 0 < β < 1, where c = 2 ln(2)C is the total rate
expressed in nats per channel use. This means that the region
D1 + D2 ≥ 1 + e−c, for which γ = 1, corresponds to SDC,
i.e., β is either 0 or 1.

3. MAIN RESULTS

3.1. Bounds on DMDC

We can bound DMDC as DMDC ≤ Dlb ≤ DSDC, where Dlb

is the bound obtained by equating the side distortions to their
minimum possible value in (1), that is,

Dlb = p11 + min
β∈[0,1]

{p01e
−βc + p10e

−(1−β)c

+ p00
e−c

e−βc + e−(1−β)c − e−c
} = p11 + min

β∈[0,1]
F (β)

Indeed, in general, it is not possible to achieve equality si-
multaneously in the three equations in (1)-(2) since two in-
dividually good descriptions tend to be similar to each other
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(thus, the second description will contribute very little to im-
prove the quality of the first one when both descriptions are
received), while two descriptions which are complementary
cannot be individually good (thus, the quality when only one
description is received tends to be poor) [5]. DSDC which is
the optimal distortion subject to the SDC constraint is

DSDC = min{pe1, pe2} + (1 − min{pe1, pe2})e−c

that amounts to sending an SDC code over the channel with
lowest erasure rate, regardless of the value of c.
Fig. 1(a) 1(b) plots simulation for p11 = 0.2, p01 = 0.3,

andC = 1. We see that the optimal average distortion and the
optimal β for DMDC and Dlb are very close. Hence, we can
simplify our problem by considering the relationship between
optimal average distortion and correlation of channels in the
case of Dlb instead of general DMDC.

3.2. Relationship between optimal average distortion and
correlation

Given C, we chose different sets of p00, p01, p10, and p11 for
a fixed correlation, and computed the optimal average distor-
tion. We were not able to identify any specific (monotonic)
behavior of DDMC as a function of the correlation besides
for the some special cases, such as p01 = p10, that is, equal
erasure rates on both channels.
Fig. 1(c) shows that the correlation coefficient and the av-

erage distortion for p11 = 0.2, and C = 1, vs. p01 = p10.
The correlation decrease while the optimal average distortion
increase with p01 = p10. Hence, the optimal average distor-
tion decrease when the correlation increases. This conclusion
does not hold in general. We can prove it analytically by us-
ing the bound Dlb (referred as ”with three lower bounds” in
the following.)
1) The correlation for fixed p11 and p01 = p10 is given

by ρ = p11−pe
2

pe(1−pe) , pe = p11 + p01, which is a decreasing
function of pe. Indeed,

dρ

dpe
=

−(pe − p11)2 − p11(1 − p11)
pe

2(1 − pe)2
≤ 0

2) The optimal average distortion Dlb increases with p01

for fixed p11 and p01 = p10. Indeed, let

y = D1 + D2 − e−c = e−βc + e−(1−β)c − e−c.

Then Dlb can be re-written as

Dlb = min
y

{
p11 + p10(y + e−c) + p00

e−c

y

}

By differentiating with y we get that the optimal y must sat-
isfies

y =
√

p00

p10
e−c ∈ [2e−c/2 − e−c, 1]

where the range for y is determined by the constraints in
defining the rate distortion region. Hence: if√

p00

p10
e−c ≥ 1 ⇔ y(opt) = 1 ⇔ β ∈ {0, 1};

if√
p00
p10

e−c ≤ 2e−c/2−e−c ⇔ y(opt) = 2e−c/2−e−c ⇔ β = 1
2 ;

else

y(opt) =
√

p00
p10

e−c ⇔ β = 1
2 − 1

c cosh−1

(√
p00
p10

−e−c/2

2

)

We can then show: when
√

p00
p10

e−c ≥ 1, then

Dlb = p11 + p10(1 + e−c) + (1 − p11 − 2p10)e−c

which is clearly increasing in p10; when
√

p00
p10

≤ 2 − e−c/2

then

Dlb = p11 + 2p10e
−c/2 + (1 − p11 − 2p10)

e−c

2e−c/2 − e−c

whose derivative with p10 is

e−c/2 − e−c/2

2 − e−c/2
> 0 ⇔ e−c/2 < 1

henceDlb is increasing with p10; else y(opt) =
√

p00
p10

e−c and

Dlb = p11+p10(
√

p00

p10
e−c+e−c)+(1−p11−2p10)

e−c√
p00
p10

e−c

whose derivative with p10 is

dDave

dq
= e−c + e−c/2 1 − p11 − 4p10√

p00p10
> 0

⇔ e−c/2

√
p00

p10
≥ (2 − (

√
p00

p10
)2) ⇔ 1 > e−c/2

hence also in this last case Dlb is increasing with p10.
We analytically show that Dlb decreases when p01 in-

creases in the case of fixed p11, p01 = p10. In this situation,
let’s take a look at two special cases of correlation 1 and cor-
relation -1. For correlation 1, we will have p10 = p01 = 0.
Hence, Dlb = p11 + p00D0 = p11 + (1 − p11)D0 = DSDC.
Then in this case, the packet will both arrive or drop. We
can infer that in this case SDC is optimal, since both pack-
ets either arrive together or both drop. For correlation -1,
we have p10 = p01 = 1/2 and p00 = p11 = 0. Hence,
Dlb = 1

2 (D1 + D2) = e−c/2. Then in this case, each time
only one of the two packets will arrive. We can infer that in
this case, the two descriptions could be the same. Clearly,
e−c/2 is greater than e−c, which is consistent with our con-
clusion that the optimal average distortion will decrease as
correlation increases in this situation.
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Fig. 2. (a) Boundary of MDC or SDC in p01, p10 plane, (b) approximate β, (c) approximate average distortion for p01 = 0.3,
p11 = 0.2, C = 1

3.3. Contour of MDC or SDC

Our analysis does not lead to the closed-form solution of op-
timal β for the rate allocation problem even in the case with
three lower bounds. However, as in [4], using the KKT opti-
mization conditions, we can find the closed-form conditions
for MDC (i.e., β strictly in (0,1)) in the case of three lower
bounds, which is the region as follows:

dF (β)
dβ

|β=0 = −p01 + p10e
−c + p00e

−c(1 − e−c) < 0

dF (β)
dβ

|β=1 = −p01e
−c + p10 − p00e

−c(1 − e−c) > 0

The above two conditions with another additional condition (
p01 +p10 +p00 +p11 = 1) define the contour of MDC region.
When p11 = 0.2, the simulation results are shown in Fig. 2(a)
for different C. We can see that MDC regions enlarge when
C increases. We can utilize these contours to approximate the
optimal β with a linear function. For example, with regard to
the contour forC = 1, p11 = 0.2, with p01 = 0.3, the optimal
β as a function of p10 is approximated as

β =

{
0 p10 ∈ [0, a), a = (1−p11)e

c(1−ec)+p01e2c

1+ec(1−ec)
p10−a

b p10 ∈ [a, b], b = 1 − p01 − p11

Fig. 2(b) and Fig. 2(c) show how the proposed approximation
compare with the optimal solution and “three lower bounds”
approximation. Notice that the optimal β inside the contour is
in general non-linear, which causes the approximation of op-
timal β to deviate from the other two cases. Nonetheless, the
average distortion curves are almost superimposed. Hence,
we can use this approximation to directly determine the opti-
mal β in practice.

4. CONCLUSION AND FUTUREWORK

In this paper, we studied the optimal rate allocation problem
for MDC in order to attain the minimum average distortion

over multiple correlated erasure channels under the constraint
that the total coding rate is fixed. We analytically show that
the optimal average distortion will decrease as the correla-
tion increases in the case of “three lower bounds”. Moreover,
we attain the closed-form conditions for the contour of us-
ing MDC or SDC. Also, utilizing the contour, we proposed a
heuristic to directly determine the optimal rate allocation for
MDC over multiple erasure channels. In the future, we plan
to investigate the optimal rate allocation for MDC when we
consider the relation between the data rate and the probability
of erasure.
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