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ABSTRACT

Multimedia social network analysis is an emerging research
area, which analyzes the behavior of users who share multi-
media content and investigates the impact of human dynamics
on multimedia systems. In peer-to-peer live-streaming social
networks, user cooperate with each other to provide a dis-
tributed, highly scalable and robust platform for live stream-
ing applications. However, every user wishes to use as much
bandwidth as possible to receive a high-quality video, and
full cooperation cannot be guaranteed. This paper proposes
a game-theoretic framework to model user behavior and de-
signs incentive-based strategies to stimulate user cooperation
in peer-to-peer live streaming. We analyze the Nash equilib-
rium and the Pareto optimality of the game. We also take
into consideration sel sh users’ cheating behavior and pro-
pose cheat-proof strategies. Both our analytical and simula-
tion results show that the proposed strategies can effectively
stimulate user cooperation, achieve cheat free and help pro-
vide reliable services.

Index Terms— Multimedia social network, user dynam-
ics

1. INTRODUCTION

With recent advance in networking, multimedia processing,
and communications, over millions of users share multimedia
data over Internet, and we witness the emergence of large-
scale multimedia social networks. In such large scale social
networks, users in uence each other’s decisions and perfor-
mance, and it raises a critical issue to formulate the complex
user dynamics and analyze the impact of human factors on
multimedia systems. Such investigation provides fundamen-
tal guidelines to offer secure and personalized services.
Peer-to-Peer (P2P) live streaming [1], is one of the biggest

multimedia social networks on the internet, consisting of self-
organized and distributed systems without centralized author-
ities or infrastructures. Users in a P2P live-streaming social
network watch live programs over networks simultaneously,
and the system relies on voluntary contributions of resources
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from individual users to achieve high scalability and robust-
ness. Each user has limited bandwidth and wants to maximize
his/her own payoff. Different users have different objectives
and full user cooperation cannot be guaranteed. Therefore,
to provide satisfactory services, a critical issue to be resolved
rst is to analyze users’ behavior, provide incentives and de-
sign optimal strategies to stimulate user cooperation [2].

Users in a P2P live streaming social network are strategic
and rational, and they are likely to manipulate any incentive
systems to maximize their own payoff. Every rational user in
the network is sel sh and wants to receive the highest possible
resolution of the video. They will even cheat if they believe it
could help maximize their payoff. Game theory [3] is a proper
tool to model the interaction among peers, and to analyze the
optimal and cheat-proof cooperation strategies.

In the literature, a game theoretic framework was pro-
posed in [4] for P2P le sharing and [5], [6] model and give
incentives in P2P le sharing. The work in [7] introduced an
incentive-based cooperation mechanism for P2P live stream-
ing networks, assuming every user is willing to cooperate. In
[8], a reputation-based mechanism was proposed to stimulate
user cooperation in P2P live-streaming networks. However,
all prior work do not consider the cheating behavior of sel sh
users and do not address the cheat-proof issues in P2P live-
streaming social networks.

In this paper, we focus on designing cooperation stimula-
tion strategies for P2P live streaming social networks under a
game theoretic framework. We rst study a two-player game
and investigate the Nash equilibrium. Since this game usually
has multiple equilibriums, we then investigate how to apply
extra optimality criteria, such as Pareto optimality, fairness,
and cheat-proo ng, to further re ne the obtained Nash equi-
librium solutions. The goal of this analysis is to stimulate
each pair of user in the P2P live streaming game to cooperate
with each other and achieve better performance.

The rest of this paper is organized as follows. Section 2
introduces the P2P live streaming system model. Section 3
studies the two-player game and the equilibria. In Section 4
we show simulation results to evaluate the performance of the
proposed strategies. Finally, Section 5 concludes this paper.
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Fig. 1. Feasible and Enforceable payoff pro les

2. SYSTEMMODEL

2.1. P2P Live Streaming Cooperation Model

In a delivery architecture for live video streaming, a video bit
stream is divided into media chunks of M bits, and all the
chunks are available at an original server. When a peer wants
to view the video, he/she rst obtains a list of peers currently
watching the video, together with information about the avail-
ability of each chunk in others’ buffers. At the beginning of
each round, every user sends a request either to one of his
peers or the original server. Every peer can only send one re-
quest in each round and also answer at most one request. Let
τ be the duration of each round.

2.2. Two-Player Game Model

To simplify the analysis, we start from the two-person game
with single-layer video coding structure. There are total N
users in the social network, and the original server’s upload
bandwidth can only afford transmitting N ′ chunks in τ sec-
onds, and N ′ << N . Assume at the beginning, every user in
the network only asks the original server for the data, and two
of them, user 1 and user 2, want to see if they can cooperate
with each other for to get a better-quality video.
In the two person game, if player i answers the other

player k’s request and sends the requested chunk of data to
him/her, then player i’s cost isM/(Wiτ), whereWi is player
i’s available upload bandwidth. On the other hand, if player k
also forwards the data that i requested to him/her and player
i receives the chunk correctly, then he gets a gain of gi. Here,
the cost is considered as the percentage of upload bandwidth
occupied by transmitting the chunk and the gain is an user de-
ned value between 0 and 1. It is reasonable to assume that

gi ≥ ci and there exists a cmax with ci ≤ cmax, which is the
same as if there exists a minimum upload bandwidth Wmin

such thatWi ≥ Wmin. Here,Wi and gi are player is private
information, which is not known to the other player unless
player i reports them either honestly or dishonestly.
In each round, player i can choose its action ai from 0, 1,

where ai = 0 means in this round, player i chooses not to re-

spond to the other player’s request, while ai = 1means player
i is willing to cooperate at this round. P12 and P21 denote the
successful transmission probability from user 1 to user 2 and
that from user 2 to user 1, respectively. Then, for each round,
players’ payoffs are calculated as follows, provided that the
action pro le (a1, a2) being taken:

π1(a1, a2) = (a2P21)g1 − a1
M

W1τ

π2(a1, a2) = (a1P12)g2 − a2
M

W2τ
(1)

The payoff function is consisted of two terms: the rst
term of πi denotes the gain of user i with respect to the oppo-
nent’s action, and the second term denotes the cost of with re-
spect to its own action. Let π(a1, a2) = (π1(a1, a2), π2(a1, a2))
be the payoff pro le.
It is easy to check that, if this game will only be played

for one time, the only Nash equilibrium (NE) is (0, 0), which
means no one will respond to the other’s request. Accord-
ing to the backward induction principle [9], this is also true
when the repeated game will be played for nite times with
game termination time known to both players. Therefore, in
such scenarios, for each player, its only optimal strategy is
to always play noncooperatively. However, in live streaming
scenario, these two players will interact many rounds and no
one can know exactly when its opponent will quit the game.
Next, we show that, under a more realistic setting, besides
the noncooperative strategy, cooperative strategies can be ob-
tained. Let si denote player is behavior strategy, and let s1, s2

denote the strategy pro le. Next, we consider the following
utility function of the in nitely repeated game:

Ui(s) = lim
T→∞

T∑
t=0

ui(s) (2)

Now, we analyze NEs for the in nitely repeated game with
utility function Ui. According to Folk theorem [9], for each
feasible and enforceable payoff pro le, there exists at least
one Nash Equilibrium (NE) that can achieve it. The set of
feasible payoff pro les for the above game is:

V0 = convex hull {v|∃ (a1, a2) with π(a1, a2) = v
where a1, a2 ∈ {0, 1}} , (3)

and the set of enforceable payoff, denoted by V1, is

V1 = {v|v ∈ V0 and v1 > 0, v2 > 0}. (4)

Figure 1 illustrate the both feasible region and the enforce-
able region: the feasible region is inside the convex hull of
{(0, 0), (P21g1,− M

W2τ ), (P21g1 − M
W1τ , P12g2 − M

W2τ ), and
(− M

W1τ , P12g2)}. V1 is the gray region in Figure 1. It is clear
that there exists an in nite number of Nash Equilibriums. For
simpli cations, in this paper, we use x = (x1, x2) to denote
the set of NE strategies corresponding to the enforceable pay-
off pro le (x2P21g1 − x1

M
W1τ , x1P12g2 − x2

M
W2τ ).
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3. OPTIMAL STRATEGY ANALYSIS

From the above analysis, we can see that the in nitely re-
peated game has an in nite number of Nash Equilibriums, and
apparently, not all of them are simultaneously acceptable. For
example, the payoff pro le (0, 0) is not acceptable from both
players’ point of view. Therefore, in this section, we will dis-
cuss how to re ne the equilibriums based on new optimality
criteria to eliminate those less rational and likely Nash Equi-
libriums. Then, we will analyze the robustness of equilibri-
ums against sel sh users’ cheating behavior and search for
cheat-proof strategies.

3.1. Nash Equilibrium Re nement

In this paper, we consider the following optimality criteria:
Pareto optimality, proportional fairness, and absolute fairness.
Pareto Optimality: We rst re ne our solutions by applying
the criterion of Pareto optimality. A payoff pro le v ∈ V0 is
Pareto optimal if and only if there is no v′ ∈ V0 that v′

i ≥ vi

for all i ∈ N [3]. Pareto Optimality means no one can in-
crease his/her payoff without degrade others’, which the ra-
tional players will always go to. For the game shown in Fig-
ure 1, the segment between (P21g1,− M

W2τ ) and (P21g1 −
M

W1τ , P12g2 − M
W2τ ) in the rst quadrant and the segment be-

tween (− M
W1τ , P12g2) and (P21g1 − M

W1τ , P12g2 − M
W2τ ) in

the rst quadrant are in the Pareto Optimal set.
Proportional Fairness: Next, we will further re ne the solu-
tion set based on the criterion of proportional fairness. Here, a
payoff pro le is proportionally fair if the product U1(s)U2(s)
can be maximized, which can be achieved by maximizing
π1(s)π2(s) in every round. It has been shown in [3] that the
proportional fairness solution is always Pareto optimal. The
proportional fairness point x∗ can be derived by solving:

∂π1(s)π2(s)
∂s1

∣∣∣∣
x∗

= 0

= s2(P12P21g1g2) − M2

W1W2τ2
− 2s1P12

M

W2τ
, and

∂π1(s)π2(s)
∂s2

∣∣∣∣
x∗

= 0

= s1(P12P21g1g2) − M2

W1W2τ2
− 2s2P21

M

W1τ
. (5)

The solution is:

x∗ =

⎧⎨
⎩

(C
2 , 1) if 1 < 2

C ,
(1, 1) if 2

C ≤ 1 ≤ C
2 ,

(1, c) if 1 ≥ C
2 ,

where C =
M

W2τP12g2
+

W1τP21g1

M
. (6)

Absolute Fairness: In many scenarios, absolute fairness is
also an important criteria though an absolute fairness solu-
tion is not guaranteed to be Pareto optimal. In this paper, we

consider absolute fairness in payoff, which refer to the most
direct fairness criteria that all players in the game have the
same payoff. By solving U1(x∗) = U2(x∗), we can get the
unique absolute fairness solution as follows:

x∗ =

⎧⎨
⎩

(P21g1W2τ+M
P12g2τW1+M , 1) if 1 ≥ P21g1W2τ+M

P12g2τW1+M ,

(1, P12g2τW1+M
P21g1W2τ+M ) if 1 ≥ P12g2τW1+M

P21g1W2τ+M .
(7)

3.2. Cheating and Cheat-Proof Strategies

In Section 3.1, we obtained several unique equilibriums with
different optimality criteria. However, as shown in (6) and (7),
all these solutions involve some private information (gi,Wi)
reported by each player. Due to players’ greediness, honestly
reporting private information cannot be taken for granted and
players may tend to cheat whenever they believe cheating can
increase their payoffs. Therefore, cheat proof is an essen-
tial requirement for P2P live streaming social networks, and
it is critical to design cheat-proof strategies that make cheat-
ing behavior nonpro table and unattractive. Such a strategy
can help stimulate user cooperation and improve the overall
system performance.
Cheating On Private Information: One way of cheating is
to cheat on the private information (gi,Wi, Pji). First, let
we exam whether the proportional fairness solution in (6) is
cheat-proof with respect to (gi,Wi, Pij). In (6), if 1 < 2/C,
then x∗

2 = 1 is xed. If x∗
1 = C/2, from the formula of

C, it is clear that player 1 can reduce x∗
1 by reporting lower

g1, W1, P21 to increase his/her own payoff. Same situation
also happens when 1 > C/2, in which player 2 can cheat by
reporting lower g2 , P12, andW2 to increase his/her own pay-
off. Applying the same examination to the absolute fairness
solution in (7), we can also prove that the absolute fairness
solution is also not cheat-proof with respect to the private in-
formation. Therefore, players have no incentives to honestly
report their private information. On the contrary, they will
cheat whenever cheating can increase their payoff.
As the consequence that both players cheat with respect to

Wi and gi, from the above analysis, both players will report
the minimum value of gi and Wi. Since we have assumed
that Pjigi ≥ M/(Wiτ), andWi ≥ Wmin, both players will
claim Pjigi = M/Wiτ = M/(Wminτ) and both solution (7)
and (6) becomes:

x∗ = (1, 1) (8)

and the corresponding payoff pro le is:

v∗ = (P21g1 − M

W1τ
, P12g2 − M

W2τ
), (9)

which implies that both players should always cooperate with
each other. It is clear that solution in (8) forms an Nash Equi-
librium, is Pareto-Optimal, and is cheat-proof with respect to
private information gi andWi.
Cheating On Buffer Information: The other way of cheat-
ing is to cheat on buffer information, that is, although player
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i has the data in the buffer, he/she does not report it to its
opponent, so that reduce the number of request from its op-
ponent. As a result, increasing its own payoff by lowering
si. This kind of cheating is effective only when at a certain
round, both players request a chunk of data from each other.
To prevent this kind of cheating, each player should not send
data more than what the other one has sent.
Based on the above analysis, we can conclude that, in the

two-player P2P live streaming game, in order to maximize
each user’s own payoff and be resistant to possible cheat-
ing behavior, a player should not send more data than what
the other player has forwarded to him. Speci cally, for each
player in each round, it should always agree to send the re-
quested data unless the other player refused it in the previous
round or there is no useful data in the other player’s buffer.
We refer to the above strategy as two-player cheat-proof P2P
live streaming cooperation strategy.

4. SIMULATION RESULTS

In our simulation setting, there are total 500 users in the net-
work without cooperation. Each peer is either an DSL peer
with 768 kbps uplink, or a cable peer with 300 kbps uplink
bandwidth. We x the ration between DSL peers and cable
peers as 4:6. The video is initially stored at an original server
with upload bandwidth 3 Mbps. The request round is 1 sec-
ond and the buffer length is 30 seconds. We choose the “Fore-
man” video sequence (352x288) resolution with frame rate 30
frames per second. Using MPEG 4 to encode the video into
a single layer bitstream with 150 kbps, and divided the video
into 1-second chunks, thus the chunk size is M = 150KB.
Among those peers, we randomly choose two peers to co-
operate using the two-player cheat-proof P2P live streaming
cooperation strategy. We set g1 = 1, and every peer claim the
lowest bandwidthWmin = 300 kbps. In our simulations, we
assume that when a sel sh user lies about the chunks of data
that are available in his/her buffer, he/she always lies aboutm
chunks of data in the buffer – even though thesem chunks of
data are in the buffer, the sel sh user tells the other player that
he/she has not received them either.
Figure 4 shows the utilities of the cheating player when

the other player is always honest. The x axis is the percentage
of chunks in the buffer that the cheating player hides from the
other one. The straight line is the utility if the player being
honest, and the red triangle line is the utility if the player is
cheating on the buffer information. It is clear that if the cheat-
ing player hides more data, it lowers his/her own payoff, and
therefore, the best policy is being honest. This results shows
the cheat-proof property of our proposed cooperation strat-
egy. In addition, from the simulations, the average number of
chunks that each user receives without cooperation is 20, and
with two-player cooperation, each user receives 36 chunks of
data, which almost doubles the percentage of received data
without cooperation. It shows that our strategy can improve
each user’s individual payoff and thus stimulate user cooper-
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Fig. 2. Payoff of the cheating player and that of the honesty
player. The x axis is the percentage of data chunks in the
buffer that the cheating player hides from the other one.

ation.

5. CONCLUSIONS
In this paper, we investigate cooperation stimulation in P2P
live streaming social networks under a game theoretic frame-
work. An illustrating two-player game is studied, and differ-
ent optimality criteria, including Pareto-Optimality, propor-
tional fairness and absolute fairness is performed to re ne the
obtained Nash Equilibriums. We also study the cheating be-
havior in P2P live streaming networks and propose a cheat-
proof strategy that makes noncooperation non-pro table, and
thus unattractive, to sel sh users. Our simulation results show
that the proposed strategy is cheat proof, and all users improve
their payoffs by cooperating with each other.
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