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ABSTRACT

In this paper, we present a novel approach for 3D facial ex-
pression recognition which is inspired by the advances of ant
colony and particle swarm optimization (ACO and PSO re-
spectively) in the field of data mining. Anatomical correspon-
dence between faces is first established using a generic 3D
face model which is deformed elastically to match the facial
surfaces. Surface points are then used as a basis for classi-
fication according to a set of classification rules, which are
discovered by an ACO/PSO-based rule discovery algorithm.
The performance of the proposed algorithm has been evalu-
ated on the BU-3DFEDB facial expression database where a
total recognition rate of 92.3% was achieved.

Index Terms— Pattern recognition, intelligent systems

1. INTRODUCTION

Facial expression recognition is a challenging task which has
received growing interest within the research community over
the past years. While, however, many works have examined
expression recognition from still images or video [1], a few
researchers have addressed the problem using 3D facial infor-
mation. Nevertheless, 3D expression recognition is expected
to gain ground in the future, since depth can handle more ef-
fectively the main limitation factors of the current 2D state-
of-the-art systems, i.e. head pose and illumination changes.
In this paper we present a new approach to the expression

classification problem using purely depth information. We
propose a classifier based on a set of rules which are discov-
ered following the principles of swarm intelligence, in partic-
ular of Ant Colony Optimization (ACO) and Particle Swarm
Optimization (PSO). The term “swarm intelligence” is used to
describe a set of optimization algorithms inspired by the col-
lective behaviour of social animals, such as insects, birds and
fish. These algorithms consist of decentralized simple agents
which interactively move in a high combinatorial search space
to find an optimum or suboptimum solution. ACO has been
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introduced by Dorigo [2] and has been applied successfully
to NP-hard problems where shortest distance paths are sought
[3, 4]. In this work we use the framework of Ant-Miner [5],
a modification of the original ACO able to discover classi-
fication rules. PSO, which simulates the cyclic “dancing”
movement of flocks of birds, has been developed by Eber-
hart and Kennedy [6] and has been used initially for nonlinear
function optimization. Its ability of moving in a high dimen-
sional space avoiding local minima has been exploited soon
in a variety of applications from training neural networks to
data mining and protein classification [7]. However, the po-
tential of these techniques in facial expression recognition has
not been explored yet.
In this work, we use ACO and PSO to discover the clas-

sification rules which best discriminate the classes of proto-
typical facial expressions. First we fit a 3D deformable model
to each input 3D facial scan under anatomical constraints and
then the set of discovered rules is applied to the parameters
describing the above model. The performance of the proposed
algorithm has been evaluated on the BU-3DFEDB database
[8] where a total recognition rate of 92.3% has been achieved.
This paper follows Ekman’s approach to the classification

of expressions. Ekman [9] proposed six prototypical emo-
tions, anger, fear, disgust, happiness, sadness and surprise,
each of which corresponds to a unique facial expression. Al-
though the uniqueness and the universality of these emotions
are still under dispute within the psychology community, most
of researchers follow the above classification scheme. To this
end, Wang et al [10] propose an algorithm where expressions
are classified according to the distribution of several surface
geometry descriptors. These descriptors are based on princi-
pal curvatures of different regions of the facial surface which
are delimited according to the neuro-anatomic knowledge of
the configuration of facial muscles and their dynamics. The
authors evaluate their algorithm on the BU-3DFEDB database
and they report a maximum 83.6% recognition rate achieved
with a Linear Discriminant Analysis classifier. To the best
of our knowledge, this is the only work which addresses the
problem using purely 3D data and it is used in this paper for
comparison.
The rest of the paper is organized as follows: In the next

section we describe the procedure to establish anatomical cor-
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respondence among faces, in Section 3 we present the ACO/PSO
framework for the construction of the classification rules and
finally in Section 4 we evaluate the performance of the pro-
posed algorithm by experimenting on the BU-3DFEDB data-
base.

2. ESTABLISHING POINT CORRESPONDENCE

Our goal is to establish point-to-point correspondence among
3D facial surfaces so that alignment of anatomical facial fea-
tures be guaranteed. Since 3D facial information is usually
given in the form of a point cloud, we represent facial sur-
faces as deformations of a common generic 3D mesh. To
achieve this, we model the facial surface as a subdivision sur-
face similarly to [11]. Thus, each facial surface is represented
by a fixed number of mesh vertices having the same topology
among all faces.
A triangular 3D mesh M0 with N0 vertices, neutral ex-

pression and average identity is used as a base-mesh. This
base-mesh is subdivided according to a subdivision rule re-
sulting in a more dense mesh, whose vertices may be written
as a linear combination of the base-mesh vertices. Subdivi-
sion may continue infinitely, converging to a smooth continu-
ous surface which is a function of the base-mesh and the sub-
division rule. However, in practice, we do not have to make
infinite subdivisions since after a few levels (e.g. 3 in our ex-
periments) the mesh becomes dense enough to approximate
the subdivision surface. This final mesh M with N vertices
V = {v1 . . .vN}, where vi = [xi yi zi]

T are the coordi-
nates of each vertex, serves as the generic face model which
is deformed so that it resembles the cloud of facial points.
Since the subdivision surface has to be fitted to the 3D

cloud of points guaranteeing anatomical correspondence, a
set of landmarks corresponding to anatomically salient points
of the face has to be defined both on the mesh and the cloud of
points. Let pi, i = 1 . . . K denote the points of the cloud and
yi, i = 1 . . . L the associated landmarks, e.g. y1 corresponds
to the left eye leftmost point, y2 to the left eye rightmost point
and so on. Similarly, we select a subset of vertices onM that
anatomically correspond to the L landmarks. Thus, we can
define easily a table c(i) that maps each landmark index i to
the corresponding vertex index ofM .
Model fitting is formulated as an energy minimization prob-

lem which gives rise to two opposed force fields: An external
field of attractive forces towards the cloud and an internal field
of elastic forces which oppose to vertex displacements. The
deformation energy is formulated as the weighted sum

Edef = λ1Ec + λ2Emc + λ3Ecm + λ4Ee (1)

Ec is the sum of the squared distances between landmarks
and corresponding vertices given by

Ec =

L∑

i=1

(
yi − vc(i)

)2 (2)

Emc is the sum of the squared directed distances from
each mesh M vertex to the nearest point of the cloud whose
index is returned by functionmc(·), while Ecm is the sum of
the inversely directed distances, from each point of the cloud
to the nearest mesh vertex whose index is returned by func-
tion cm(·). Using both terms leads to a smoother force field
between the mesh and the point cloud. Analytically we have

Emc =
N∑

i=1

(
vi − pmc(i)

)2 (3)

Ecm =

K∑

i=1

(
pi − vcm(i)

)2 (4)

The above energy terms are responsible for the attractive
forces, while internal elastic forces stem from Ee, which is a
measure of the elastic energy of the mesh edges that penalizes
their non parallel displacements. It is used as a regularization
term which prevents mesh triangles from being folded and it
is given by the equation

Ee =

N∑

i=1

1

Ni

∑

j∈Ni

(
vi − vj − v0

i + v0
j

)2 (5)

where Ni is the set of vi’s neighbours, Ni is its cardinality
and v0

i , v0
j are the initial positions of the vertices.

The coordinates of vertices vi that minimize Edef can be
found by differentiating Eq. 1 with respect to vi and setting
the partial derivatives equal to zero. Differentiation leads to
a linear system of equations which can be solved easily using
Singular Value Decomposition. The estimated parameters vi

are subsequently used for expression recognition.

3. CLASSIFICATION USING SWARM
INTELLIGENCE

Classification rules discovered using ACO and PSO are ex-
pressed in the form of IF-THEN rules:

IF<term1 AND ... termN> THEN<class>

where the terms in the rule antecedent (IF part) are triples of
the form<attribute, operator, value> and the class in the rule
consequent (THEN part) is one of the six possible expres-
sions. These rules are stored in a sequentially accessed list
and expressions are classified to the class predicted by the first
valid rule. In case no rule is valid, the expression is classified
to a default class. Using this framework, the rule classifier
actually divides the hyperspace of attributes to a number of
hypercubes and classifies each attribute vector to the class as-
sociated with the hypercube the vector belongs to. Thus non-
linear shapes of the manifolds of the classes can be captured
effectively leading to increased recognition performance.
ACO and PSO are involved in the rule construction step

and more precisely in the construction of the rule antecedent.
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ACO can solve problems where a shortest distance path on a
graph is sought. The solution is found by “ants” which lay a
pheromone trail while moving through the nodes of the graph.
When an ant has to choose between several nodes for its next
move, it is more likely to choose the node with the highest
amount of pheromone. Since shortest graph edges are tra-
versed more quickly, more ants will pass through them and
thus more pheromone will be accumulated. At the same time
accumulated pheromone will encourage more and more ants
to follow shortest edges until all ants finally move through
the shortest path. We also note that pheromone evaporates
through time so that search of the space and avoidance of lo-
cal minima be feasible.
Within this context, attributes are allowed to get discrete

values which represent the nodes of the graph. Each ant con-
structs the antecedent part of its rule term by term. The value
of the next attribute is selected according to: a) the pheromone
of each possible value; b) the heuristic index of each possi-
ble value, which depends on the distribution of classes con-
ditional on the value in question. The higher the amount of
pheromone of a value, the higher the probability of being cho-
sen and the more uniformly distributed the classes are condi-
tional on this value, the smaller the probability of being cho-
sen. Once a rule is constructed, it is pruned to remove terms
that may have been introduced unduly due to the stochastic
character of the rule construction. Pruning usually improves
the quality Q of the rule which is defined as the product of
sensitivity and specificity

Q =
TP

TP + FN
×

TN

FP + TN
1 (6)

Then, the pheromone of the terms of the temporarily best rule
is increased, while the pheromone of the other terms is de-
creased. This process is iterated until an optimum rule is
found. Then, the training samples covered by this rule are
removed from the training set and the process is repeated to
discover the next rule. When a few training samples remain
in the training set, rule discovery is terminated and the default
rule which assigns to the class of the majority of the samples
is constructed.
The disadvantage of ACO is that it applies to discrete at-

tributes. Although discretizing is not difficult to perform, it
leads to the loss of order that continuous attributes possess
and may be important to classification. To overcome this
problem we have also explored PSO which can handle con-
tinuous data.
In PSO framework, the rule antecedent is represented by

a particle moving in a high dimensional attribute space. The
movement of the id-th particle is defined by its own experi-
ence, that is its past best position bid, and by the experience
of its most successful neighbour, that is the local best posi-
tion bloc. Its position pt

id and its velocity vt
id at iteration t are

1TP=true positive, FP=false positive, TN=true negative, FN=false nega-
tive.

given by equations

vt
id=c1

(
vt−1

id + c2(bid − pt−1
id ) + c3(bloc − pt−1

id )
)
(7)

pt
id=pt

id + vt
id (8)

where c1, c2 and c3 are constants used to bound the veloc-
ity and prevent particles from oscillating without converging.
From the above equations it can be seen that particles actually
search the space between the best past position of their own
and of their neighbours hoping to find better positions whose
quality is defined again by Eq. 6.
During rule construction, the antecedent part is converted

to a vector consisting of two dimensions per attribute, one for
the lower bound and one for the upper. For instance, if there
are two attributes a1 and a2 then we seek for a rule

IF l1 ≤ a1 ≤ u1 AND l2 ≤ a2 ≤ u2 THEN C

and the vector to be optimized consists of the four bounds
p = [l1 u1 l2 u2]

T . A number of particles is let to move
through the search space until they converge to an optimum
position/rule. This rule is then pruned and added to the rule
list, while the samples it covers are removed from the train-
ing set. Subsequent rules are found by iterating the whole
process.

4. PERFORMANCE EVALUATION

The proposed algorithm is evaluated on the BU-3DFEDB data-
base [8] which contains 56 female and 44 male subjects dis-
playing the six universal expressions in four levels of inten-
sity, low, middle, high and highest. For each subject, there is
also a 3D face scan with neutral expression thus resulting in
a total number of 2,500 face scans in the database. Each fa-
cial scan is also associated with a set of feature points located
on the eyes, the eyebrows, the nose, the mouth and the face
boundary, which have been detected manually and are used as
landmarks during the establishment of point correspondence.
In our experiments we use the 10-fold cross-validation ap-

proach. First, we set all the faces of the database in anatom-
ical correspondence as described in Section 2. Thus each fa-
cial surface is approximated by a 3D mesh with 2,500 vertices
whose coordinates are stacked in the vector to be classified.
Then, at each experiment we use 10 subjects chosen randomly
as the validation set and the rest subjects as the training set
assuring that each subject is included in the validation set at
least once. Principal Components Analysis (PCA) is also ap-
plied to reduce data dimensionality and remove redundancy.
Keeping the 98% of the data variance results in a 80D vec-
tor representation. Linear Discriminant Analysis (LDA) is
then used to find a linear transformation which maximizes
the intra-class scatter matrix and meanwhile minimizes the
inter-class scatter matrix. This step results in a final 5D vec-
tor representation of facial surfaces which is the input of the
ACO and PSO rule discovery algorithms. We remind that a
discretization stage is also required before ACO is applied.
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Table 1. Expression recognition rates in %.
Wang [10] ACO PSO

In/Out Ang. Dis. Fea. Hap. Sad. Sur. Ang. Dis. Fea. Hap. Sad. Sur. Ang. Dis. Fea. Hap. Sad. Sur.
Ang. 80 1.7 6.3 0.0 11.3 0.8 58 0 0 0 42 0 75.3 0 0.4 0 24.3 0
Dis. 4.6 80.4 4.2 3.8 6.7 0.4 0 96.5 3 0.5 0 0 0 100 0 0 0 0
Fea. 0 2.5 75 12.5 7.9 2.1 0 0 100 0 0 0 0 0 100 0 0 0
Hap. 0 0.8 3.8 95 0.4 0 0 1.3 1 97.3 0.4 0 0 0 0 100 0 0
Sad. 8.3 2.5 2.9 0 80.4 5.8 37.6 0 0 0 62.4 0 20.7 0 0.2 0 79.1 0
Sur. 1.7 0.8 1.2 0 5.4 90.8 0 0 1 0 0 99 0 0 0 0 0 100

During testing, each test face is subjected to the transfor-
mations defined by the PCA and LDA steps and then its ex-
pression is classified according to the discovered rules. The
most time consuming part of recognition is searching for near-
est neighbours during point correspondence establishment which
is encountered by a space partition technique [12] that accel-
erates mesh fitting and allows real-time recognition.
Experimental results are summarized in Table 1, where

rates reported in [10] are also included for comparison. As
it is shown, the highest confusion occurs between the angry
and sad expression. This is because these expressions dif-
fer mainly in the eyebrow configuration which however can-
not be captured accurately when depth information is used.
Nevertheless, a total recognition rate of 92.3% using the PSO
classifier was achieved.

5. CONCLUSION

In this paper we proposed the use of ACO and PSO to extract
optimum facial expression classification rules. These classi-
fiers were applied to anatomically aligned vector representa-
tions of the facial surfaces obtained by deforming elastically
a generic 3D face model. The high performance of the pro-
posed approach was demonstrated on the BU-3DFEDB data-
base where it was shown that further improvement can be
achieved by focusing on the angry and sad expression dis-
crimination problem.
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