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ABSTRACT

In this paper we present the implementation of an online

HMM decoding process. The algorithm derives an online

version of the Viterbi algorithm on successive variable length

windows, iteratively storing portions of the optimal state path.

We explicit the relation between the hidden layer’s topology

and the applicability and performance prediction of the al-

gorithm. We evaluate the validity and performance of the

algorithm on a phone recognition task on a database of con-

tinuous speech from a native French speaker. We specifically

study the latency-accuracy performance of the algorithm.

Index Terms— Viterbi decoding, Real time systems,

Hidden Markov models, Phone recognition.

1. INTRODUCTION

Artistic paradigms often involve signal-to-symbolic sub-tasks

such as musical score to audio alignment, or gesture following

[1]. In such cases, the system’s latency is critical for subse-

quent actions to happen in an interactive way.

Finding the optimal state sequence with respect to the

Maximum a posteriori (MAP) criterion is efficiently done

with the Viterbi algorithm by tracing back through a matrix

of back-pointers, starting from the end of the sequence. How-

ever, standard implementation of this method is unsuitable

in the case of a streamed input for which there is potentially

no ending to the sequence. One way to cope with this prob-

lem consists in applying the Viterbi algorithm on successive

windows and outputting only the first states of the decoded

path [2], [3]. An interesting aspect of this method is that

the introduced delay can be set beforehand to a maximum

value. However such solutions generally lead to suboptimal

decoding.

An alternative approach consists in comparing partial

path hypotheses on an expanding window until they converge

towards the same solution. Such a method was implemented

in a video target-tracking application [4] as well as on con-

ditional random fields, where the look-ahead window was

dynamically set so as to balance a latency/accuracy trade

off measure [5]. However, no path convergence condition is

clearly outlined in these works.

In this paper, we explicitly study the influence of the

model’s topology on potential paths convergence, accuracy

and latency. We further combine both approaches by forcing

a suboptimal state label output when the latency exceeds a

predefined threshold. Quantitative evaluation is carried out

on a real-time phone recognition task.

2. VITERBI DECODING

2.1. Standard Viterbi

Let us consider a given model and observation sequence pair

{λ,OT}, where λ is parametrized by a state-space S of size

K, a prior state distribution π, a transition matrix A and a

state emission density bi(Ot)=P (st = i|Ot, λ). The decod-

ing step of a recognition system consists in retrieving a state

sequence that maximizes the maximum a posteriori probabil-

ity [6]. Such a sequence is referred to as the optimal path s∗.

The Viterbi algorithm is a method that yields the best path

solution, with two main iterative steps :

1. a time-synchronous forward pass to update the partial

likelihoods δt(i),∀i ∈ S : the score of the best path

ending in state i at time t. The best state predecessors

are stored in a matrix of back-pointers ψt(i).

2. a backtracking on ψt(i), starting from the state with the

highest score at time T

The backtrack step implies that the algorithm is not time-

synchronous since the last observation frame at time T is

needed in order to decode the global optimal state path s∗

from T back to the first time index.

2.2. Short-time Viterbi

Let us define s(a, b, i) as the state sequence obtained by com-

puting δ and ψ values on an observation window delimited

by time indices a and b (such that a < b) and backtrack-

ing from an arbitrary state i at time b. We further refer to

such a state sequence as a local path. the set of local paths

{s(a, b, i),∀i ∈ S} are identical on an initial path portion,

from t = a up to an instant τ < T , which we refer to as a fu-
sion point (as referred to in a Dynamic Time Warping context
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[7]). A fusion point τ has the attractive following property

: the local paths up to τ are always identical to the global

Viterbi path between a and τ .

Proof : Let us consider a set of local paths {s(a, b, i),∀i ∈
S} for which a fusion point arises at time τ :

1. All back-pointers stay locally unchanged as the forward

recursion in step-2 progresses : all ψb(i)∀i computed at

a given time b are not affected by further iterations of

the algorithm at t > b.

2. as a consequence, all backtracks from t > b reaching

state i at time b yield the same path portion between

a = 1 and τ .

3. the local paths set represents backtracks from all reach-

able states at time b, including s∗t

4. it follows that st(a, b,∀i) = s∗t ,∀t = {a, ..., τ}.

From this observation, it is straightforward to derive an online

short-time Viterbi (STV) algorithm, based on local Viterbi de-

codings between successive fusion points, used as left bounds

for variable size observation windows :

Algorithm 1 Short-time Viterbi

1: Init. : a = 0, b = 0
2: for each new frame at time b do
3: compute st(a, b, i), ∀i ∈ I(a, b, λ)
4: if a fusion point τ is found s.t. τ > a then
5: output s��

a,τ

6: a = τ
7: end if
8: end for

where s��
t,t′ is the path found with STV for frames from t

to t′, and I(a, b, λ) denotes the subset of reachable states at

time b for a given model λ and given an initial state at time a.

3. INFLUENCE OF THE MODEL’S TOPOLOGY

3.1. Necessary Condition for Fusion Points

The above algorithm assumes that a fusion point occurs inside

a time interval [a, b] smaller than [1, T ]. However this is not

always allowed by the topology of the model. Consider the

execution of the STV algorithm on a toy model and sequence

pair {λ,OT} represented on Figure 1.a). Despite the sim-

plicity of the model and the strong δt(i) scores on the optimal

path state (depicted as larger dots), local paths cannot con-

verge towards state 4 (on optimal path) because backtracking

from states 1 and 2 can only lead to states 1 and 2. Thus the

algorithm is doomed to stay stuck as the observation window

expands until the final observation T .

If we now consider the almost same pair {λ′,OT}, where

the only modification made to the model consists in an ad-

ditional, arbitrarily small transition probability ε from state 4

Fig. 1. Toy example : on figure a), the set of reachable states

after time b=12 are not connex, thus the local paths cannot

fuse. On figure b), the model topology was made connex,

thus allowing a fusion point to arise at τ = 5

to state 1, as shown on Figure 1.b). When the observation

window is large enough, all states in I(a, b, λ′) are now con-

nex, i.e. any state can be reached from any other, allowing

backtracks towards states with the highest δt(i) scores, and

eventually, the fusing of local paths as shown in Figure 1.b),

where a fusion point arises at t = 5.

This example illustrates that a necessary condition for a

fusion point to arise is that all states in I(a, b, λ) have to be

connex.

3.2. Influence on Latency

Consider the state latency lat(s��
t ) as the time interval (in

number of frames) needed for the STV algorithm to output the

label of frame t. Using the previous notation, lat(s��
t ) = b−t.

The goal of an real-time algorithm is to minimize this value

for each t. Once again, the model’s topology influences our

algorithm’s behavior by setting a lower bound to the mini-

mum possible latency. This derives directly from the connex-

ity constraint discussed in the previous paragraph.

Let L = b − a be the length of the observation window.

The earliest state that can be decoded is at time a + 1, and

consequently the minimum latency for this state is L − 1. A

fusion point can occur at a + 1 only if all states in I(a, b, λ)
are connex. Let the distance d(i, j) be the transition count
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of the shortest backward path from state j to i according to

matrix A and let DI be the set of these lengths for any pair

(i, j) in I. In the most adverse case, L will need to be at least

max(DI) + 1 long to decode the state at time a + 1. This

implies that in some cases, even with very likely data, the la-

tency will have a minimum lower bound equal to max(DI).
For example, in the model of Figure 1.b), the two largest dis-

tances are d(1, 4)=3 and d(3, 2)=3. So we can affirm that in

the general case, we can not achieve optimal decoding with a

better latency than 3 frames.

4. EXPERIMENTATIONS

4.1. Database and Models

We evaluated the performance of STV on a real-time phoneme

recognition task. We used a corpus of continuous sentences

in French, pronounced by a native speaker. The database

consists in 3794 sentences split to 3640 sentences for the

training set (131967 phonemes), and to 154 sentences (3134

phonemes) for the test set. The original sound files were

sliced into 25 ms windows every 5 ms. For each resulting

frame, we extracted 39 features consisting in 13 MFCC val-

ues along with their first and second order time derivatives.

A set of 37 monophone models (including a short-pause

and a silence model) were learned on the training set by max-

imum likelihood estimation using the HTK tools [8]. Each

monophone was modeled by a five states left-right HMM,

except for the short-pause model that has only one state. The

observation densities are modeled using Gaussian mixture

models with diagonal covariance and J components per state,

yielding a total of eight sets of models for J=1, 2, 4, ..., 128.

We also trained a bigram language model over the phone

label files of the training set using HLSTATS tool from HTK.

The reference model λref was obtained by combining the

language model with the phoneme models.

4.2. Topology Modifications

In order to make the model a valid candidate for the STV algo-

rithm evaluation, we added several transitions to the topology

of the original model λref , to ensure connexity among the

models states. As mentioned in section 3.2, there should be a

relation between the connexity distance and the resulting la-

tency. We thus derived two modified models from λref : one

that guarantees connexity by adding transitions at the phone-

level (thus denoted λP , with max(DS) = 5), and another

(λS) that adds transitions at the state-level (max(DS) = 1).

The topology of λP is shown on Figure 2. Each state

embeds a monophone model. For the sake of clarity, the bi-

gram model’s probabilities are not represented. The two in-

ner non-emitting states represent the inter-monophone transi-

tions. The backward transitions ε are the topology modifica-

tions (we choose the value of ε as the double-precision value

in Matlab)

Fig. 2. Phone-level topology of model λP , including addi-

tional ε backward transitions.
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Fig. 3. a) Phone recognition scores : comparison of the un-

modified models λref behavior with two modified model sets

λP and λS . b) Latencies for different model structures pairs,

with increasing number of Gaussians. P and S letters refer to

λP and λS models sets respectively.

4.3. Recognition Performance

Phone recognition results are evaluated using the reference

transcriptions, without taking timing information into ac-

count. After alignment of the resulting phone transcription

with the reference, the accuracy score [8] is computed :

• Accuracy (%) : N−D−S−I
N .100

where N ,D,S and I are the number of phonemes, the num-

ber of deletion errors, of substitution errors and of insertion

errors, respectively. Using this score measure, the recognition

performance of our algorithm can be compared to the offline

case. The resulting curves in Figure 3.a) show that online

recognition with λP performs almost as well as in the offline

case. As one could expect, λS models lead to more insertion

errors.

4.4. Latency Performance

For each utterance decoding, we stored each fusion point in-

formation as a triplet of timestamps values (a,τ ,b), thus al-

lowing to compute the following decoding latency measure

:

lat(s��
t ) = b− t,∀t ∈]a, τ ] (1)

Figure 3.b) shows boxplots of latency values for model

sets of topologies λP and λS . For models λP , as the number

of Gaussians per state increases, the latency tends towards a

decrease after the bump at J = 8. The utterances lengths in

the test set range from 249 to 1470 frames, with a mean equal

to 524 frames. The maximum found latency across all results
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is 236. This means that all online decodings managed to find

a fusion point. Looking at the minimum latencies obtained

with λP , a floor value equal to 7 is reached for J = 32 up to

J = 128.

For models λS , although the number of Gaussians seems

to be uncorrelated to any latency tendency, the values are

comparatively concentrated below the latency values of λP

models, in a significant way. Furthermore, a floor latency

value of 2 is reached for all J model sets. The two floor laten-

cies are consistant with their theoretical minimum values (cf.

section 4.2).

4.5. Hard Constraint on Latency

In practical interactive settings, a critical maximum latency C
can be imposed on the system. We modified the STV algo-

rithm in order to force an output for time a when (b−a) > C
and no fusion point has yet been detected. The state at time a
is then chosen on the local path that maximizes δb(i),∀i ∈ I.
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Fig. 4. Accuracy curves for four imposed maximum laten-

cies, and an increasing number of Gaussians per state. The

accuracy of STV alone is reproduced for comparison.

In Figure 4, we plotted accuracy scores obtained with the

combination of STV and a forced output on a λP connex

model for different values of C. The curves clearly show a

latency/accuracy trade-off : as C gets shorter, accuracy de-

creases because of the suboptimal decoding procedure em-

ployed when forcing the output.

5. CONCLUSION AND PERSPECTIVE

This experimental study provides supporting evidence for the

applicability of the STV decoding algorithm, under identi-

fied topological constraints on the model. The quantitative

results we gathered showed that it is possible to operate mod-

ifications on a model and make it obey these constraints. We

proposed a way of satisfying these, by ensuring the model’s

states connexity, at two different model level. It appears that

as the connexity lengths reduce, the lower bound on best pos-

sible latency decreases. This happens at the expense of a joint

decrease in accuracy, caused by more insertion errors. Fi-

nally, we have evaluated a proposed algorithm combining op-

timal online decoding with a hard-latency constraint, showing

promising performances.

We have implemented this work in the Max/MSP realtime

environment for real-life testing in musical interactive setups.

Future work will focus on extensive testing with other models,

in the context of singing voice or gesture recognition.
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